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Introduction

Quantum machine learning (QML) is among the most promising applications of quantum computers
[1, 2]. In QML, one commonly considers data sets consisting of labeled classical data points mapped
to quantum states. Depending on the task, one may want to learn how to classify these data points
if the labels are discrete [3, 4], or solve a regression problem for predicting the labels when they are
continuous [5, 6]. In this work, applying the notion of variational quantum circuits [7], we develop a
data-agnostic method for solving regression tasks for labeled data represented by quantum states.

Problem statement

Suppose we are given the following training set:

T =
{
ραj , αj

}T
j=1

, (1)

where ραj are labeled data points and αj ∈ R are their corresponding labels. We consider the data
points to be quantum states described by density operators, i.e., ρα ⩾ 0 and Tr ρα = 1. Hereinafter,
we assume that ρα describes a state of n qubits. Our goal is to use the given training set T for learning
how to estimate the parameter α for an unseen datum ρα /∈ T .

Essentially, we consider a regression problem with a peculiarity that the data points are represented
by quantum states. Our aim is therefore to devise a method for predicting the labels assuming no
knowledge about the connection between the states ρα with their labels α. Among the instances of
such connection are: (i) α quantifies the entanglement of ρα, (ii) ρα is an output state of a parametrized
channel Φα[ρ] acting on some fixed input ρ, and (iii) ρα = |ψα⟩⟨ψα| is the ground state of a parametrized
Hamiltonian Hα.

Methods

We propose to solve the stated regression problem as follows. Given a labeled state ρα, we obtain the
estimation α̂ of the label α as the expected value

α̂(ρα,x,θ) = TrH(x,θ) ρα, (2)

where the Hermitian operator H is parametrized by x,θ ⊂ R. We represent this observable as a
spectral decomposition H(x,θ) =

∑
i xiΠi(θ), where x = {xi}i are the eigenvalues, and the eigen-

projectors Πi(θ) = U †(θ) |i⟩⟨i|U(θ) are the projectors onto the ith state of the computational basis
transformed by a variational circuit U(θ). Schematically, the estimation can be represented as follows:

ρα /n U(θ)
pi−→ i 7→ xi

That is, given an n-qubit labeled state ρα, we transform it by a parametrized unitary U(θ), measure
the resultant state ρα(θ) ≡ U(θ)ραU

†(θ) in the computational basis, with probability pi = ⟨i|ρα(θ)|i⟩
get the outcome i associated with xi, which gives the estimation (2) in the form α̂ =

∑
i xipi.

To find optimal parameters x∗ and θ∗, we propose to solve the following minimization problem:

x∗,θ∗ = argmin
x,θ

(
wlsfls(x,θ) + wvarfvar(x,θ)

)
, (3)
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where

fls(x,θ) =

T∑
j=1

(
αj − α̂j

(
ρα,x,θ

))2
, fvar(x,θ) =

T∑
j=1

∆2
ραj
H(x,θ),

with wls, wvar > 0 being some weights. Here, fls is essentially the sum of the squared differences
between the given labels α and our estimations α̂ = ⟨H⟩ρα ≡ TrHρα, while fvar is the sum of
variances ∆2

ραH ≡ ⟨H2⟩ρα − ⟨H⟩2ρα .
So, we seek to train an observable H which gives accurate estimations α̂ with presumably low vari-

ances. The estimation accuracy can be characterized by the mean squared error ∆2α̂ ≡
〈
(α− α̂)2

〉
α̂
,

for which one can write [8]

∆2α̂ =
∆2
ραH

µ
∣∣∂α⟨H⟩ρα

∣∣2 ⩾
1

µIc(Π, ρα)
⩾

1

µIq(ρα)
. (4)

where µ is the number of measurements. In this expression, the equality is known as the error
propagation formula. Additionally, the first and the second inequalities are, respectively, the classical
and the quantum Cramer-Rao bounds (CRB), where Ic(Π, ρα) is the classical Fisher information (FI),
which is a function of both the state ρα and measurements Π = {Πi}i, and Iq(ρα) is the quantum FI,
which depends solely on the state ρα.

Results

In this section, we report the results of the numerical application of the proposed method. To represent
the parametrized unitary U(θ), we used a two-layered hardware-efficient ansatz [9]. As the weights in
(3), if not stated otherwise, we set wls = 1 and wvar = 10−4.

First, we demonstrate the performance of our method in predicting the label α of a labeled state
ρα = |ψα⟩⟨ψα| being the ground state of the transverse field Ising Hamiltonian

Hα = −
n∑
i=1

(
σizσ

i+1
z + ασix

)
(5)

of n = 8 qubits and with the periodic boundary conditions σn+1
z ≡ σ1z . In other words, given a

collection of the form (1) of the ground states |ψα⟩ of (5), we want to solve (3) to find an observable
H the expectation ⟨H⟩ψα of which gives an estimation α̂ of the field α. In Figure 1, we show the
performance for the observables trained with different weights wvar in (3) and setting wls = 1. As
might be expected, the greater is the weight wvar, the less accurate predictions we get. However, with
a greater weight wvar, we can almost saturate the quantum CRB in (4).
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Figure 1: Left: predicted α̂ vs. true α transverse field of the 8-qubit Ising Hamiltonian (5). Right:

error propagation and CRB (4) vs. α. The observable H is trained on a set T =
{
|ψj⟩ , αj

}20

j=1
with

|ψj⟩ being the ground states of (5) with randomly generated fields αj . In the right panel, the dashed
lines of the corresponding colors indicate the achieved classical CRB, while the solid green line stands
for the quantum CRB.
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As a second test case, we train our model to predict the label α of the states of the form

ρα = e−i
α
2
σz |+⟩⟨+| eiα2 σz (6)

For this particular case, there is no observable H which gives TrHρα = α, evaluating therefore,
instead, to some function f(α). However, we can simultaneously process c copies of the state ρα,
which introduces non-linearity [10, 11] and may improve the performance of QML for some tasks
[12, 4]. Therefore, our estimator (2) becomes f̂(x,θ, c) = TrH(x,θ)ρ⊗cα . In Figure 2, we show
the results for the observables trained to predict the rotation angle α in (6) with different number
of simultaneously processed copies c. As can be seen, with c = 2 copies, we obtain very accurate
predictions for α. However, in contrast to c = 1, we do not saturate the CRB (4).
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Figure 2: Left: predicted α̂ vs. true α rotation angle of the state (6). Right: error propagation and

CRB (4). The observables H are trained on a set Tc =
{
ρ⊗cj , αj

}10

j=1
with randomly generated αj and

c = 1, 2 simultaneously processed copies.

Finally, we apply our method for learning to predict the entanglement of two-qubit random mixed

states. As a measure of entanglement, we chose the negativity N(ρAB) =
∥∥∥ρTBAB∥∥∥

1
− 1, where ∥ · ∥1

is the trace norm, and ρTBAB ≡ (1 ⊗ T )[ρ] is a state ρAB of two subsystems A and B transposed with
respect to the subsystem B [13, 14]. This time, we allow our model to process c = 4 copies of the
labeled states. The results of the prediction of the negativity with the trained observable are shown
in Figure 3. As can be seen, with our method, one is able to predict the entanglement of two-qubit
states with good accuracy. Additionally, the performance is dependent on the purity P (ρ) = Tr ρ2 of
a given state ρ: the greater is the purity, the more accurate is the estimation of the negativity N(ρ),
lower is the variance.
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Figure 3: Predicted negativity N̂ of 104 random mixed states (left) and variance of the trained
observable H (right) vs. the true negativity N . The color of points indicates the purity of the

corresponding states. The model is trained on a set T =
{
ρ⊗4
j , Nj

}1000

j=1
, where the states ρj are

generated such that their negativities are distributed approximately evenly on [0, 1].
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