PREDICTING PROPERTIES OF QUANTUM SYSTEMS BY REGRESSION ON A QUANTUM COMPUTER Andrey Kardashin 1,* , Yerassyl Balkybek 1 , Vladimir V. Palyulin 1 , Konstantin Antipin 1,2 * andrey.kardashin@skoltech.ru

¹Skolkovo Institute of Science and Technology, Moscow, Russia ²Lomonosov Moscow State University, Moscow, Russia

Problem statement

Suppose we are given the following training set:

$$
\mathcal{T} = \left\{ \rho_{\alpha_j}, \alpha_j \right\}_{j=1}^T, \tag{1}
$$

where ρ_{α_j} are labeled quantum states and $\alpha_j \in \mathbb{R}$ are their corresponding labels. Hereinafter, we assume that ρ_{α} describes a state of *n* qubits.

Our goal is therefore solving a regression problem, i.e., using the given training set $\mathcal T$ for

We parametrize the Hermitian operator *H* by $x, \theta \subset \mathbb{R}$ and represent this observable as a spectral decomposition

Estimation

Given a labeled state ρ_{α} , one can obtain the estimation $\hat{\alpha}$ of the label α from the expected value of an observable *H* in the state ρ_{α} . Generally, such expectation would give a function *f*(α), which can be written as the label α itself adjusted by a bias $b(\alpha)$:

The first equality is known as the error propagation formula. The first and the second inequalities are, respectively, the classical and the quantum Cramer-Rao bounds (CRB), where $I_c(\Pi, \rho_\alpha)$ is the classical Fisher information (FI) and $I_q(\rho_\alpha)$ is the quantum FI.

$$
f(\alpha) \equiv \text{Tr}\, H\rho_{\alpha} = \alpha + b(\alpha). \tag{2}
$$

$$
H(\boldsymbol{x},\boldsymbol{\theta})=\sum_{i}x_{i}\Pi_{i}(\boldsymbol{\theta}),
$$
\n(3)

where $\bm{x} = \{x_i\}_i$ are the eigenvalues, and the eigenprojectors $\Pi_i(\bm{\theta}) = U^\dagger(\bm{\theta})\ket{i}\!\!\bra{i} U(\bm{\theta})$ are the projectors onto the *i*th state of the computational basis transformed by a variational circuit $U(\boldsymbol{\theta})$.

First, we demonstrate the performance of our method in predicting the label *h* of a labeled state $\rho_h = |\psi_h\rangle \langle \psi_h|$ being the ground state of the 8-qubit transverse field Ising Hamiltonian

Schematically, the label prediction can be depicted as follows:

In Fig. [1,](#page-0-0) we show the performance for the observables trained with different weights w_{var} in [\(4](#page-0-1)) and setting $w_{\text{ls}} = 1$. As expected, the greater is the weight w_{var} , the less accurate predictions we get, but also lower is the variance.

Fig. 1: Left: Predicted $\tilde{h} = \text{Tr } H(\boldsymbol{x}^*, \boldsymbol{\theta}^*) \rho_h$ vs. true *h* transverse field of the 8-qubit Ising Hamiltonian ([6\)](#page-0-2). Right: Error propagation and CRB ([5\)](#page-0-3) vs. α ; the dashed lines indicate classical CRB.

$$
\rho_\alpha \not\longrightarrow \boxed{U(\boldsymbol{\theta})} \qquad \qquad \overbrace{\longrightarrow}^{p_i} i \mapsto x_i
$$

Optimization

To find optimal parameters x^* and θ^* , we solve the following minimization problem:

Consider the amplitude-damping (AD) channel $\Phi_{\alpha}[\rho] = \sum_{k=1}^{2} V_k(\alpha) \rho V_k^{\dagger}$ $\chi_k^{\uparrow}(\alpha)$, where $V_1(\alpha) = \sqrt{\alpha} |0\rangle\langle 1|, V_2(\alpha) = |0\rangle\langle 0| + \sqrt{1 - \alpha} |1\rangle\langle 1|$ and the input state $\rho = |+\rangle\langle +|$. *√ √*

In Fig. [2,](#page-0-4) we compare the predictions of α of the AD channel via [\(4\)](#page-0-1) and via the Bayesian approach with the uniform prior. With $w_{\text{ls}} = w_{\text{var}} = 1$, our procedure indeed coincides with the Bayesian one with the flat prior.

$$
\boldsymbol{x}^*, \boldsymbol{\theta}^* = \arg\min_{\boldsymbol{x}, \boldsymbol{\theta}} \left(w_{\mathrm{ls}} F_{\mathrm{ls}}(\boldsymbol{x}, \boldsymbol{\theta}) + w_{\mathrm{var}} F_{\mathrm{var}}(\boldsymbol{x}, \boldsymbol{\theta}) \right), \tag{4}
$$

where

$$
F_{\text{ls}}(\boldsymbol{x},\boldsymbol{\theta})=\sum_{j=1}^T\Big(\alpha_j-\hat{f}\big(\rho_{\alpha_j},\boldsymbol{x},\boldsymbol{\theta}\big)\Big)^2,\quad F_{\text{var}}(\boldsymbol{x},\boldsymbol{\theta})=\sum_{j=1}^T\Delta_{\rho_{\alpha_j}}^2H(\boldsymbol{x},\boldsymbol{\theta}),
$$

with w_{ls} , $w_{\text{var}} > 0$ being weights.

Here, $F_{\rm ls}$ is the sum of the squared differences between the given labels α and estimations \hat{f} of $f(\alpha) = \langle H \rangle_{\rho_\alpha} \equiv \text{Tr } H \rho_\alpha$, while F_{var} is the sum of variances $\Delta^2_{\rho_\alpha} H \equiv \langle H^2 \rangle_{\rho_\alpha} - \langle H \rangle^2_{\rho_\alpha}$ $\frac{2}{\rho_{\alpha}}.$

Cramer-Rao bound

The accuracy of the estimation $\hat{\alpha} \equiv f^{-1}(\hat{f})$ can be characterized by the mean-squared error (MSE) $\Delta^2 \hat{\alpha} \equiv \langle (\alpha - \hat{\alpha})^2 \rangle$, for which one can write

 $\left\| \rho_{AI}^{T_{B}}\right\|$ *AB* $\prod_{i=1}^{n}$ We allow our model to process $c = 4$ copies of the labeled states, so that we train it on a set $\mathcal{T} = \{ \rho_i^{\otimes 4} \}$ $_{j}^{\otimes 4}, N_{j}$ \sum_{1}^{1000} with random mixed two-qubit states ρ_j and their negativities N_j . As can be seen in Fig. [3](#page-0-5), with our method, one is able to predict the entanglement of two-qubit states with a good accuracy.

$$
\Delta^2 \hat{\alpha} = \frac{\Delta_{\rho_\alpha}^2 H}{\mu |\partial_\alpha \langle H \rangle_{\rho_\alpha}|^2} = \frac{\Delta^2 \hat{f}}{|\partial_\alpha \langle H \rangle_{\rho_\alpha}|^2} \ge \frac{1}{\mu I_c(\Pi, \rho_\alpha)} \ge \frac{1}{\mu I_q(\rho_\alpha)}.
$$
(5)

where μ is the number of measurements.

Predicting the transverse field of the Ising model

$$
H_h = -\sum_{i=1}^8 \left(\sigma_z^i \sigma_z^{i+1} + h \sigma_x^i\right). \tag{6}
$$

We trained the observable *H* on a set $\mathcal{T} = \{ |\psi_j\rangle, h_j \}$ $\sum_{i=1}^{20}$ $j=1$ with random h_j .

learning how to estimate the parameter α for an unseen datum ρ_{α} .

- There could be various connections between the data points ρ_{α} and their labels α , e.g.: • α quantifies the entanglement of ρ_{α} ;
- ρ_{α} is an output state of a parametrized channel $\Phi_{\alpha}[\rho]$ acting on some fixed input ρ ;
- $\rho_{\alpha} = |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$ is the ground state of a parametrized Hamiltonian H_{α} .

Connection to the Bayesian approach

For a large training set size T and $w_{\text{ls}} = w_{\text{var}} = 1$, the problem ([4\)](#page-0-1) can be reduced to \min_H \int_0^b \int_a^b Tr ρ_α (*H* − α **1**)² d α , which is equivalent to minimizing the Bayesian MSE

$$
\Delta_B^2 \hat{\alpha} = \int_a^b \Pr(\alpha) \operatorname{Tr} \rho_\alpha (H - \alpha \mathbb{1})^2 d\alpha \tag{7}
$$

with the flat prior $Pr(\alpha) = 1/(b - a)$.

That is, we transform an *n*-qubit labeled state ρ_{α} by a parametrized unitary $U(\boldsymbol{\theta})$, measure the resultant state $\rho_\alpha(\bm{\theta}) \equiv U(\bm{\theta}) \rho_\alpha U^\dagger(\bm{\theta})$ in the computational basis, and with probability $p_i = \langle i | \rho_\alpha(\boldsymbol{\theta}) | i \rangle$ get the outcome i associated with x_i , which gives $f(\alpha) = \sum_i x_i p_i$.

Fig. 2: Left: Predicted $\tilde{\alpha} = \text{Tr } H(\boldsymbol{x}^*, \boldsymbol{\theta}^*) \rho_\alpha$ vs. true α amplitude damping parameter for different weights w_{var} . Right: Error propagation and CRB ([5](#page-0-3)) vs. α . The models ([4](#page-0-1)) are trained on a set $\mathcal{T} = \{\rho_{\alpha_j}, \alpha_j\}_{j=1}^{500}$ $\sum_{j=1}^{300}$ with equidistant α_j .

Predicting the entanglement of two-qubit states

Finally, we apply our method for entanglement learning for two-qubit random mixed states. As a measure of entanglement, we chose the negativity $N(\rho_{AB}) =$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ \mathbb{I} *−* 1.

Fig. 3: Left: Predicted negativity $\tilde{N} = \text{Tr } H(\boldsymbol{x}^*, \boldsymbol{\theta}^*) \rho_N$ of 10⁴ random mixed states. Right: Variance of the trained observable *H* vs. the true negativity *N*. The color of points indicates the purity $P(\rho) = \text{Tr} \rho^2$ of the corresponding states ρ_N .

