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Problem statement

Suppose we are given the following training set:

T =
{
ραj, αj

}T
j=1

, (1)

where ραj are labeled quantum states and αj ∈ R are their corresponding labels. Hereinafter,
we assume that ρα describes a state of n qubits.

Our goal is therefore solving a regression problem, i.e., using the given training set T for
learning how to estimate the parameter α for an unseen datum ρα.

There could be various connections between the data points ρα and their labels α, e.g.:
• α quantifies the entanglement of ρα;

• ρα is an output state of a parametrized channel Φα[ρ] acting on some fixed input ρ;

• ρα = |ψα〉〈ψα| is the ground state of a parametrized Hamiltonian Hα.

Estimation

Given a labeled state ρα, one can obtain the estimation α̂ of the label α from the expected
value of an observable H in the state ρα. Generally, such expectation would give a function
f (α), which can be written as the label α itself adjusted by a bias b(α):

f (α) ≡ TrHρα = α + b(α). (2)

We parametrize the Hermitian operator H by x,θ ⊂ R and represent this observable as a
spectral decomposition

H(x,θ) =
∑
i

xiΠi(θ), (3)

where x = {xi}i are the eigenvalues, and the eigenprojectors Πi(θ) = U †(θ) |i〉〈i|U(θ) are
the projectors onto the ith state of the computational basis transformed by a variational
circuit U(θ).

Schematically, the label prediction can be depicted as follows:

ρα /n U(θ)








pi−→ i 7→ xi

That is, we transform an n-qubit labeled state ρα by a parametrized unitary U(θ), measure
the resultant state ρα(θ) ≡ U(θ)ραU

†(θ) in the computational basis, and with probability
pi = 〈i|ρα(θ)|i〉 get the outcome i associated with xi, which gives f (α) =

∑
i xipi.

Optimization

To find optimal parameters x∗ and θ∗, we solve the following minimization problem:

x∗,θ∗ = argmin
x,θ

(
wlsFls(x,θ) + wvarFvar(x,θ)

)
, (4)

where

Fls(x,θ) =

T∑
j=1

(
αj − f̂

(
ραj,x,θ

))2

, Fvar(x,θ) =

T∑
j=1

∆2
ραj
H(x,θ),

with wls, wvar > 0 being weights.

Here, Fls is the sum of the squared differences between the given labels α and estimations
f̂ of f (α) = 〈H〉ρα ≡ TrHρα, while Fvar is the sum of variances ∆2

ρα
H ≡ 〈H2〉ρα − 〈H〉2ρα.

Cramer-Rao bound

The accuracy of the estimation α̂ ≡ f−1(f̂ ) can be characterized by the mean-squared
error (MSE) ∆2α̂ ≡

〈
(α− α̂)2

〉
, for which one can write

∆2α̂ =
∆2
ρα
H

µ
∣∣∂α〈H〉ρα

∣∣2 = ∆2f̂∣∣∂α〈H〉ρα
∣∣2 ⩾ 1

µIc(Π, ρα)
⩾ 1

µIq(ρα)
. (5)

where µ is the number of measurements.

The first equality is known as the error propagation formula. The first and the second
inequalities are, respectively, the classical and the quantum Cramer-Rao bounds (CRB),
where Ic(Π, ρα) is the classical Fisher information (FI) and Iq(ρα) is the quantum FI.
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Predicting the transverse field of the Ising model

First, we demonstrate the performance of our method in predicting the label h of a labeled
state ρh = |ψh〉〈ψh| being the ground state of the 8-qubit transverse field Ising Hamiltonian

Hh = −
8∑
i=1

(
σizσ

i+1
z + hσix

)
. (6)

We trained the observable H on a set T =
{
|ψj〉, hj

}20

j=1
with random hj.

In Fig. 1, we show the performance for the observables trained with different weights wvar

in (4) and setting wls = 1. As expected, the greater is the weight wvar, the less accurate
predictions we get, but also lower is the variance.

Fig. 1: Left: Predicted h̃ = TrH(x∗,θ∗)ρh vs. true h transverse field of the 8-qubit Ising Hamiltonian (6). Right: Error
propagation and CRB (5) vs. α; the dashed lines indicate classical CRB.

Connection to the Bayesian approach

For a large training set size T and wls = wvar = 1, the problem (4) can be reduced to

minH
∫ b
a Tr ρα (H − α1)2 dα, which is equivalent to minimizing the Bayesian MSE

∆2
Bα̂ =

∫ b

a

Pr(α) Tr ρα (H − α1)2 dα (7)

with the flat prior Pr(α) = 1/(b− a).

Consider the amplitude-damping (AD) channel Φα[ρ] =
∑2

k=1 Vk(α)ρV
†
k (α), where

V1(α) =
√
α |0〉〈1|, V2(α) = |0〉〈0| +

√
1− α |1〉〈1| and the input state ρ = |+〉〈+|.

In Fig. 2, we compare the predictions of α of the AD channel via (4) and via the Bayesian
approach with the uniform prior. With wls = wvar = 1, our procedure indeed coincides
with the Bayesian one with the flat prior.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.00

0.25

0.50

0.75

1.00

α̃

wvar = 1

wvar = 10−2

wvar = 10−4

Bayes

0.0 0.2 0.4 0.6 0.8 1.0
α

0.00

0.25

0.50

0.75

1.00

∆
2
H

|∂ α
〈H
〉|2

1
Iq

Fig. 2: Left: Predicted α̃ = TrH(x∗,θ∗)ρα vs. true α amplitude damping parameter for different weights wvar. Right: Error

propagation and CRB (5) vs. α. The models (4) are trained on a set T =
{
ραj, αj

}500

j=1
with equidistant αj.

Predicting the entanglement of two-qubit states

Finally, we apply our method for entanglement learning for two-qubit random mixed states.

As a measure of entanglement, we chose the negativity N(ρAB) =
∥∥∥ρTBAB∥∥∥

1
− 1.

We allow our model to process c = 4 copies of the labeled states, so that we train it on a
set T =

{
ρ⊗4
j , Nj

}1000

j=1
with random mixed two-qubit states ρj and their negativities Nj.

As can be seen in Fig. 3, with our method, one is able to predict the entanglement of
two-qubit states with a good accuracy.

0.00 0.25 0.50 0.75 1.00
N

0.0

0.5

1.0

Ñ
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Fig. 3: Left: Predicted negativity Ñ = TrH(x∗,θ∗)ρN of 104 random mixed states. Right: Variance of the trained observable H
vs. the true negativity N . The color of points indicates the purity P (ρ) = Tr ρ2 of the corresponding states ρN .
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