PREDICTING PROPERTIES OF QUANTUM SYSTEMS BY REGRESSION ON A QUANTUM COMPUTER Andrey Kardashin^{1,*}, Yerassyl Balkybek¹, Vladimir V. Palyulin¹, Konstantin Antipin^{1,2}

*andrey.kardashin@skoltech.ru
 ¹Skolkovo Institute of Science and Technology, Moscow, Russia
 ²Lomonosov Moscow State University, Moscow, Russia

Problem statement

Suppose we are given the following training set:

$$\mathcal{T} = \left\{ \rho_{\alpha_j}, \alpha_j \right\}_{j=1}^T, \tag{1}$$

where ρ_{α_j} are labeled quantum states and $\alpha_j \in \mathbb{R}$ are their corresponding labels. Hereinafter, we assume that ρ_{α} describes a state of n qubits.

Our goal is therefore solving a regression problem, i.e., using the given training set \mathcal{T} for

Predicting the transverse field of the Ising model

First, we demonstrate the performance of our method in predicting the label h of a labeled state $\rho_h = |\psi_h\rangle\langle\psi_h|$ being the ground state of the 8-qubit transverse field Ising Hamiltonian

$$H_h = -\sum_{i=1}^8 \left(\sigma_z^i \sigma_z^{i+1} + h \sigma_x^i\right). \tag{6}$$

We trained the observable H on a set $\mathcal{T} = \{|\psi_j\rangle, h_j\}_{j=1}^{20}$ with random h_j .

learning how to estimate the parameter α for an unseen datum ρ_{α} .

- There could be various connections between the data points ρ_{α} and their labels α , e.g.: • α quantifies the entanglement of ρ_{α} ;
- ρ_{α} is an output state of a parametrized channel $\Phi_{\alpha}[\rho]$ acting on some fixed input ρ ;
- $\rho_{\alpha} = |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$ is the ground state of a parametrized Hamiltonian H_{α} .

Estimation

Given a labeled state ρ_{α} , one can obtain the estimation $\hat{\alpha}$ of the label α from the expected value of an observable H in the state ρ_{α} . Generally, such expectation would give a function $f(\alpha)$, which can be written as the label α itself adjusted by a bias $b(\alpha)$:

$$f(\alpha) \equiv \operatorname{Tr} H\rho_{\alpha} = \alpha + b(\alpha).$$
(2)

We parametrize the Hermitian operator H by $\pmb{x},\pmb{\theta} \subset \mathbb{R}$ and represent this observable as a spectral decomposition

$$H(\boldsymbol{x},\boldsymbol{\theta}) = \sum_{i} x_{i} \Pi_{i}(\boldsymbol{\theta}), \qquad (3)$$

where $\boldsymbol{x} = \{x_i\}_i$ are the eigenvalues, and the eigenprojectors $\Pi_i(\boldsymbol{\theta}) = U^{\dagger}(\boldsymbol{\theta}) |i\rangle\langle i| U(\boldsymbol{\theta})$ are the projectors onto the *i*th state of the computational basis transformed by a variational circuit $U(\boldsymbol{\theta})$.

Schematically, the label prediction can be depicted as follows:

$$p_{\alpha} \not /_{n} \quad \boxed{U(\boldsymbol{\theta})} \quad \overbrace{}^{p_{i}} i \mapsto x_{i}$$

In Fig. 1, we show the performance for the observables trained with different weights w_{var} in (4) and setting $w_{\text{ls}} = 1$. As expected, the greater is the weight w_{var} , the less accurate predictions we get, but also lower is the variance.

Fig. 1: Left: Predicted $\tilde{h} = \text{Tr} H(\boldsymbol{x}^*, \boldsymbol{\theta}^*) \rho_h$ vs. true *h* transverse field of the 8-qubit Ising Hamiltonian (6). Right: Error propagation and CRB (5) vs. α ; the dashed lines indicate classical CRB.

Connection to the Bayesian approach

For a large training set size T and $w_{\rm ls} = w_{\rm var} = 1$, the problem (4) can be reduced to $\min_{H} \int_{a}^{b} \operatorname{Tr} \rho_{\alpha} (H - \alpha \mathbb{1})^{2} d\alpha$, which is equivalent to minimizing the Bayesian MSE

$$A_B^2 \hat{\alpha} = \int_a^b \Pr(\alpha) \operatorname{Tr} \rho_\alpha \left(H - \alpha \mathbb{1} \right)^2 \, d\alpha \tag{7}$$

with the flat prior $Pr(\alpha) = 1/(b-a)$.

That is, we transform an *n*-qubit labeled state ρ_{α} by a parametrized unitary $U(\boldsymbol{\theta})$, measure the resultant state $\rho_{\alpha}(\boldsymbol{\theta}) \equiv U(\boldsymbol{\theta})\rho_{\alpha}U^{\dagger}(\boldsymbol{\theta})$ in the computational basis, and with probability $p_i = \langle i | \rho_{\alpha}(\boldsymbol{\theta}) | i \rangle$ get the outcome *i* associated with x_i , which gives $f(\alpha) = \sum_i x_i p_i$.

Optimization

To find optimal parameters \boldsymbol{x}^* and $\boldsymbol{\theta}^*$, we solve the following minimization problem:

$$\boldsymbol{x}^{*}, \boldsymbol{\theta}^{*} = \arg\min_{\boldsymbol{x},\boldsymbol{\theta}} \left(w_{\mathrm{ls}} F_{\mathrm{ls}}(\boldsymbol{x},\boldsymbol{\theta}) + w_{\mathrm{var}} F_{\mathrm{var}}(\boldsymbol{x},\boldsymbol{\theta}) \right), \tag{4}$$

where

$$F_{\rm ls}(\boldsymbol{x},\boldsymbol{\theta}) = \sum_{j=1}^{T} \left(\alpha_j - \hat{f} \left(\rho_{\alpha_j}, \boldsymbol{x}, \boldsymbol{\theta} \right) \right)^2, \quad F_{\rm var}(\boldsymbol{x},\boldsymbol{\theta}) = \sum_{j=1}^{T} \Delta_{\rho_{\alpha_j}}^2 H(\boldsymbol{x},\boldsymbol{\theta}),$$

with $w_{\rm ls}, w_{\rm var} > 0$ being weights.

Here, $F_{\rm ls}$ is the sum of the squared differences between the given labels α and estimations \hat{f} of $f(\alpha) = \langle H \rangle_{\rho_{\alpha}} \equiv \text{Tr} H \rho_{\alpha}$, while $F_{\rm var}$ is the sum of variances $\Delta^2_{\rho_{\alpha}} H \equiv \langle H^2 \rangle_{\rho_{\alpha}} - \langle H \rangle^2_{\rho_{\alpha}}$.

Cramer-Rao bound

The accuracy of the estimation $\hat{\alpha} \equiv f^{-1}(\hat{f})$ can be characterized by the mean-squared error (MSE) $\Delta^2 \hat{\alpha} \equiv \langle (\alpha - \hat{\alpha})^2 \rangle$, for which one can write

where the prior $\mathbf{1}$ ($\mathbf{\alpha}$) $\mathbf{1}$ ($\mathbf{\alpha}$).

Consider the amplitude-damping (AD) channel $\Phi_{\alpha}[\rho] = \sum_{k=1}^{2} V_k(\alpha) \rho V_k^{\dagger}(\alpha)$, where $V_1(\alpha) = \sqrt{\alpha} |0\rangle\langle 1|, V_2(\alpha) = |0\rangle\langle 0| + \sqrt{1-\alpha} |1\rangle\langle 1|$ and the input state $\rho = |+\rangle\langle +|$.

In Fig. 2, we compare the predictions of α of the AD channel via (4) and via the Bayesian approach with the uniform prior. With $w_{\rm ls} = w_{\rm var} = 1$, our procedure indeed coincides with the Bayesian one with the flat prior.

Fig. 2: Left: Predicted $\tilde{\alpha} = \text{Tr } H(\boldsymbol{x}^*, \boldsymbol{\theta}^*) \rho_{\alpha}$ vs. true α amplitude damping parameter for different weights w_{var} . Right: Error propagation and CRB (5) vs. α . The models (4) are trained on a set $\mathcal{T} = \{\rho_{\alpha_j}, \alpha_j\}_{j=1}^{500}$ with equidistant α_j .

Predicting the entanglement of two-qubit states

Finally, we apply our method for entanglement learning for two-qubit random mixed states. As a measure of entanglement, we chose the negativity $N(a_{AB}) = \|a_{B}^{T_B}\| - 1$

$$\Delta^{2} \hat{\alpha} = \frac{\Delta_{\rho_{\alpha}}^{2} H}{\mu \left| \partial_{\alpha} \langle H \rangle_{\rho_{\alpha}} \right|^{2}} = \frac{\Delta^{2} f}{\left| \partial_{\alpha} \langle H \rangle_{\rho_{\alpha}} \right|^{2}} \geqslant \frac{1}{\mu I_{c}(\Pi, \rho_{\alpha})} \geqslant \frac{1}{\mu I_{q}(\rho_{\alpha})}.$$
(5)

where μ is the number of measurements.

The first equality is known as the error propagation formula. The first and the second inequalities are, respectively, the classical and the quantum Cramer-Rao bounds (CRB), where $I_c(\Pi, \rho_{\alpha})$ is the classical Fisher information (FI) and $I_q(\rho_{\alpha})$ is the quantum FI.

As a measure of entanglement, we chose the negativity $N(\rho_{AB}) = \left\| \rho_{AB}^{T_B} \right\|_1 - 1$. We allow our model to process c = 4 copies of the labeled states, so that we train it on a set $\mathcal{T} = \left\{ \rho_j^{\otimes 4}, N_j \right\}_{j=1}^{1000}$ with random mixed two-qubit states ρ_j and their negativities N_j .

As can be seen in Fig. 3, with our method, one is able to predict the entanglement of two-qubit states with a good accuracy.

Fig. 3: Left: Predicted negativity $\tilde{N} = \text{Tr} H(\boldsymbol{x}^*, \boldsymbol{\theta}^*) \rho_N$ of 10⁴ random mixed states. Right: Variance of the trained observable H vs. the true negativity N. The color of points indicates the purity $P(\rho) = \text{Tr} \rho^2$ of the corresponding states ρ_N .

