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Introduction

Quantum machine learning (QML) is among the most promising applications of quantum computers
[1, 2]. In QML, one commonly considers data sets consisting of labeled classical data points mapped
to quantum states. Depending on the task, one may want to learn how to classify these data points
if the labels are discrete [3, 4], or solve a regression problem for predicting the labels when they are
continuous [5, 6]. In this work, applying the notion of variational quantum circuits [7], we develop a
data-agnostic method for solving regression tasks for labeled data represented by quantum states.

Problem statement

Suppose we are given the following training set:

T =
{
ραj , αj

}T
j=1

, (1)

where ραj are labeled data points and αj ∈ R are their corresponding labels. We consider the data
points to be quantum states described by density operators, i.e., ρα ⩾ 0 and Tr ρα = 1. Hereinafter,
we assume that ρα describes a state of n qubits. Our goal is to use the given training set T for learning
how to estimate the parameter α for an unseen datum ρα /∈ T .

Essentially, we consider a regression problem with a peculiarity that the data points are represented
by quantum states. Our aim is therefore to devise a method for predicting the labels assuming no
knowledge about the connection between the states ρα with their labels α. Among the instances of
such connection are: (i) α quantifies the entanglement of ρα, (ii) ρα is an output state of a parametrized
channel Φα[ρ] acting on some fixed input ρ, and (iii) ρα = |ψα⟩⟨ψα| is the ground state of a parametrized
Hamiltonian Hα.

Methods

We propose to solve the stated regression problem as follows. Given a labeled state ρα, one can obtain
the estimation α̂ of the label α from the expected value of an observable H in the state ρα. Generally,
such expectation is a function f(α), which can be written as the label α itself adjusted by a bias b(α):

f(α) ≡ TrHρα = α+ b(α). (2)

We parametrize the Hermitian operator H as H(x,θ) =
∑

i xiΠi(θ), where x = {xi}i are the eigen-
values, and the eigenprojectors Πi(θ) = U †(θ) |i⟩⟨i|U(θ) are the projectors onto the ith state of the
computational basis transformed by a variational circuit U(θ). Schematically, the label prediction can
be represented as follows:

ρα /n U(θ)
pi−→ i 7→ xi

That is, given an n-qubit labeled state ρα, we transform it by a parametrized unitary U(θ), measure
the resultant state ρα(θ) ≡ U(θ)ραU

†(θ) in the computational basis, with probability pi = ⟨i|ρα(θ)|i⟩
get the outcome i associated with xi, which gives the prediction (2) in the form f(α) =

∑
i xipi.

To find optimal parameters x∗ and θ∗, we propose to solve the following minimization problem:

x∗,θ∗ = argmin
x,θ

(
wlsfls(x,θ) + wvarfvar(x,θ)

)
, (3)
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where

Fls(x,θ) =

T∑
j=1

(
αj − f̂

(
ραj ,x,θ

))2
, Fvar(x,θ) =

T∑
j=1

∆2
ραj
H(x,θ),

with wls, wvar > 0 being some weights. Here, Fls is the sum of the squared differences between the
given labels α and our estimations f̂ of f(α) = ⟨H⟩ρα ≡ TrHρα, while Fvar is the sum of variances
∆2
ραH ≡ ⟨H2⟩ρα − ⟨H⟩2ρα .
So, we seek to train an observable H which gives accurate estimations α̂ with presumably low

variances. The estimation accuracy can be characterized by the mean squared error (MSE) ∆2α̂ ≡〈
(α− α̂)2

〉
α̂
, for which one can write [8]

∆2α̂ =
∆2
ραH

µ
∣∣∂α⟨H⟩ρα

∣∣2 ⩾
1

µIc(Π, ρα)
⩾

1

µIq(ρα)
,

〈
(f̂ − α)2

〉
=

∆2H

µ
+ b2 ⩾

|∂α⟨H⟩|2
µIc(Π, ρα)

+ b2 (4)

where µ is the number of measurements. In the first expression, the equality is known as the error
propagation formula. Additionally in this formula, the first and the second inequalities are, respec-
tively, the classical and the quantum Cramer-Rao bounds (CRB), where Ic(Π, ρα) is the classical
Fisher information (FI), which is a function of both the state ρα and measurements Π = {Πi}i, and
Iq(ρα) is the quantum FI, which depends solely on the state ρα. The second formula characterizes the
MSE for a biased estimation of α.

Results

In this section, we report the results of the numerical application of the proposed method. To represent
the parametrized unitary U(θ), we used a two-layered hardware-efficient ansatz [9]. As the weights in
(3), if not stated otherwise, we set wls = 1 and wvar = 10−4.

First, we demonstrate the performance of our method in predicting the label h of a labeled state
ρh = |ψh⟩⟨ψh| being the ground state of the transverse field Ising Hamiltonian

Hh = −
n∑
i=1

(
σizσ

i+1
z + hσix

)
(5)

of n = 8 qubits and with the periodic boundary conditions σn+1
z ≡ σ1z . In other words, given a

collection of the form (1) of the ground states |ψh⟩ of (5), we want to solve (3) to find an observable H
the expectation ⟨H⟩ψα of which gives a prediction h̃ ≡ ⟨ψh|H(x∗,θ∗)|ψh⟩ of the field h. In Figure 1,
we show the performance for the observables trained with different weights wvar in (3) and setting
wls = 1. As might be expected, the greater is the weight wvar, the less accurate predictions we get.
However, with a greater weight wvar, we can almost saturate the quantum CRB in (4).

Figure 1: Left: Predicted h̃ vs. true h transverse field of the 8-qubit Ising Hamiltonian (5). Right:

Error propagation (4) vs. h. The observable H is trained on a set T =
{
|ψhj ⟩, hj

}20

j=1
with |ψj⟩ being

the ground states of (5), and the fields hj are generated randomly. In the right panel, the dashed lines
indicate the achieved classical CRB, while the solid green line stands for the quantum CRB.
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For a large training set size T and wls = wvar = 1, (3) can be reduced to minH
∫ b
a Tr ρα (H − α1)2 dα,

which is equivalent to minimizing the Bayesian MSE [10]

∆2
Bα̂ =

∫ b

a
Pr(α) Tr ρα (H − α1)2 dα (6)

with the flat prior Pr(α) = 1/(b− a).

Consider the amplitude-damping (AD) channel Φα[ρ] =
∑2

k=1 Vk(α)ρV
†
k (α), where V1(α) =

√
α |0⟩⟨1|,

V2(α) = |0⟩⟨0| +
√
1− α |1⟩⟨1| and the input state ρ = |+⟩⟨+|. In Fig. 2, we compare the predictions

of α of the AD channel via (3) and via the Bayesian approach (6) with the uniform prior. With
wls = wvar = 1, our procedure indeed coincides with the Bayesian one with the flat prior.
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Figure 2: Left: Predicted α̃ = TrH(x∗,θ∗)ρα vs. true α amplitude damping parameter for different
weights wvar. Right: Error propagation and CRB (4) vs. α. The models (3) are trained on a set

T =
{
ραj , αj

}500

j=1
with equidistant αj . In both panels, the solid blue line shows the data produced by

the observable obtained by minimizing the Byesian MSE (6).

Finally, we apply our method for learning to predict the entanglement of two-qubit random mixed

states. As a measure of entanglement, we chose the negativity N(ρAB) =
∥∥∥ρTBAB∥∥∥

1
− 1, where ∥ · ∥1

is the trace norm, and ρTBAB ≡ (1 ⊗ T )[ρ] is a state ρAB of two subsystems A and B transposed with
respect to the subsystem B [11, 12]. This time, we allow our model to process c = 4 copies of the
labeled states. The results of the prediction of the negativity with the trained observable are shown
in Figure 3. As can be seen, with our method, one is able to predict the entanglement of two-qubit
states with good accuracy. Additionally, the performance is dependent on the purity P (ρ) = Tr ρ2 of
a given state ρ: the greater is the purity, the more accurate is the estimation of the negativity N(ρ),
lower is the variance.
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Figure 3: Predicted negativity Ñ of 104 random mixed states (left) and variance of the trained
observable H (right) vs. the true negativity N . The color of points indicates the purity of the

corresponding states. The model is trained on a set T =
{
ρ⊗4
j , Nj

}1000

j=1
, where the states ρj are

generated such that their negativities are distributed approximately evenly on [0, 1].
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