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Abstract

Fine-tuning techniques are crucial in adapting large pre-trained machine learning models to specific tasks
and avoiding complete model retraining. As model size continues to grow, traditional fine-tuning (which requires
updating all model parameters) becomes computationally expensive and less feasible, so parameter-efficient
methods are essential. In this work, we propose classical and quantum Adapters inspired from Hamming-weight
preserving quantum circuits from quantum machine learning literature. We evaluate the effectiveness of these
quantum-inspired techniques on the MNIST dataset, and compare against the widely used classical adapter
method, Low Rank Adaptation (LoRA). Our results suggest that these techniques could serve as an effective
substitute for other parameter-efficient fine-tuning methods currently used in the task-specific adaptation of
large language models. Finally, we discuss the linear combination of unitaries (LCU) framework as a quantum
parameterization for Adapters in both applications using quantum data and classical data in quantum states.
We discuss opportunities and challenges of such models relating to barren plateaus and classical simulability.

Introduction Pre-trained Language Models (PLMs) have shown exceptional performance in numerous natural
language processing (NLP) tasks [1]. To optimize these models for specific tasks, fine-tuning adapts PLMs to
task-specific data. Yet, traditional fine-tuning, which updates all model parameters, becomes computationally
prohibitive as PLMs grow larger. To address this challenge, Parameter Efficient Fine Tuning (PEFT) methods
are widely used by industry practitioners [2]. So-called Adapters have the role of adapting the full model to the
fine-tuning scenario. Low-Rank Adaptation (LoRA) [3] is perhaps the most widely used technique for PEFT
that efficiently reduces the number of trainable parameters by leveraging low-rank matrix decompositions. A
basic adapter works as follows. Assume a pre-trained weight matrix W0 ∈ Rd×k, producing output h given input
x. For example, LoRA modifies the model by adding an update ∆W := BA, via summation, where B ∈ Rd×r,
A ∈ Rr×k, with r ⩽ min(d, k) enforcing the low-rank condition. The output of a LoRA adapted layer is then h′

as shown below. During adaptation, only A and B are trainable, while W0 remains frozen, significantly reducing
the computational overhead.

PLM → h =W0x =⇒ PLM+ LoRA → h′ =W0x+∆Wx = (W0 +BA)x

Quantum-inspired classical Adapters Using quantum, or quantum-inspired methods, we aim to discover
novel Adapters, either for quantum or classical models, which either outperform the current state-of-the-art in
terms of metrics such as accuracy, and/or give more efficient parameterizations of Adapters. Our first proposal in
this direction is a novel quantum-inspired (classical) parameterization for adapter layers inspired from Hamming
weight (HW) preserving quantum circuits proposed by Refs. [4, 5, 6]. A specific instance of these circuits is
known as the quantum compound layer, which can be shown to be a quantum efficient parameterization for
compound matrices [4], where a compound matrix is defined as follows. Given a ‘base’ matrix, A ∈ Rn×n,

the compound matrix A(k) for k ∈ [n] is the
(
n
k

)
×

(
n
k

)
dimensional matrix with entries A

(k)
IJ := det(AIJ). The

‘compound Adapters’ which will serve the basis of our proposal are quantum-inspired because, for a constant
k = O(1), these matrices can be efficiently classically simulated, although may be implemented via quantum
circuits to enable a polynomial speedups. We discuss two possibilities in the following.

Direct compound parameterization of Adapters The first proposal is to directly use the kth order
compound matrix as the adapter matrix. By matching

(
n
k

)
to the size of the original pre-trained matrix W0 we

get the following adapter update rule:
∆W compound := A(k)

Since the compound matrices are determined by the parameters in their base, A, the compound adapter has
a comparable quadratic-to-linear parameter reduction, similar to LoRA.



     

(a)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

40

50

60

70

80

90

100

Va
lid

at
io

n 
A

cc
ur

ac
y

Finetuning on 5-9 MNIST

Methods
Full finetuning
LoRA
HW preserving
Compound

(b)

Method (FT) {5-9} (OG) {0-4} Np

Full 98.50% 44.97% 8645

LoRA 87.37% 54.30% 256
Comp. 90.26% 53.61% 256
HW 84.71% 60.24% 144

(c)

Figure 1: Overview of finetuning outcomes using different models and techniques. a) Hamming-weight & compound adapter
parameterizations. HW is block-diagonal matrix composed of compound matrices, and compound is a specific order compound matrix b)
Validation accuracy while finetuning using different techniques. c) Comparison of model performance on the original dataset (MNIST)
after finetuning for 20 epochs (FT, MNIST {5-9}). Quantum inspired parameterizations are able to achieve similar performance to LoRA
while demonstrating lesser forgetting (OG, MNIST {0-4}).

Hamming weight preserving parameterization of Adapters Secondly, we propose to use all compound
matrices in a block-diagonal (direct sum) form as the adapter as seen in Fig. 1a. In the context of quantum
circuits, such matrices can correspond to Hamming-weight preserving unitaries, where each compound matrix
A(k) acts exclusively on a fixed (k) Hamming-weight subspace of the full 2n dimensional Hilbert space. With
this parameterization, it is sufficient to take an exponentially compression base A ∈ Rlog(N)×log(N) as an adapter
for the original W0 ∈ RN×N .

∆WHW :=

n⊕
k=0

A(k)

Finally, we can increase the expressivity of these Adapters by taking a linear combination with parameters,
α := {αi}i as follows (where (∗) ∈ {compound,HW}):

∆W ∗
LC :=

∑R

i=1
αi∆W

∗
i =⇒ h′ =W0x+∆W ∗

LCx

Here, the number of sub-Adapters (R) added is a hyperparameter similar to the rank hyperparameter in LoRA.

Results In our experiments, we evaluate the efficacy of the proposed quantum-inspired fine-tuning Adapters
using the MNIST dataset [7]. We partition MNIST into two subsets, A,B based on class labels: A :=
{0, 1, 2, 3, 4},B := {5, 6, 7, 8, 9}. The architecture of our neural network to adapt is straightforward, consist-
ing of three linear layers of sizes NH ×NH , NH ×NH and NH × 51 respectively. Initially, the network is trained
to predict digits in subset A, then we adapt the trained model to predict subset B. The methods we compare
are 1) Full fine-tuning, 2) Low-Rank Adaptation (LoRA), 3) Hamming-weight preserving adaptation, 4) direct
compound adaptation. For the latter two (3, 4) we choose R = 2 in the linear-combination. In Fig. 1b we
show the validation accuracy on MNIST 5-9 (subset B) when fine-tuning using different strategies. We make
two observations. First, even though the Hamming-weight preserving adapter (∆WHW

LC ) has fewer parameters,
it is able to perform comparably to the SOTA LoRA. However, with comparable parameters, the compound
adapter, ∆W compound

LC , can outperform LoRA by 3% in accuracy. Also when tested on the original dataset as
shown in Table 1c, the Hamming-weight adapter, ∆WHW

LC is capable of being less forgetful (losing less accuracy
on original problem). Minimizing forgetfulness is especially important to induce generalization abilities when
models are fine-tuned across various tasks. Therefore, both of these new approaches may be able to replace
SOTA fine-tuning methods in the literature, for different purposes.

Quantum Adapters The above linear combination of adaptors ∆W ∗
LC is essential to the performance of the

adaptation. Taking inspiration from this, we propose to use the above models in a purely quantum framework,

1Since we have 5 possible output classes.
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Figure 2: Proposed quantum adapter for fine-tuning a quantum neural network (QNN). a) A linear combination of unitaries
(LCU) circuit for implementing an adapter circuit QA in conjunction with a QNN layer. b) Cartoon of dynamical Lie algebra (DLA)

difference between a generic QNN and QA.

using the quantum circuits themselves as adaptors. In doing so, one could either extend the adaptors to the
fully quantum realm - using restricted circuits to fine-tune to quantum datasets which originally require large or
complex circuits for performance, or potentially perform the adaptation of classical models directly on quantum
hardware using circuits. Specifically, compound circuits have been used in QML literature for their subspace
preserving structure and low-dimensional dynamical Lie algebra (DLA) enabling the avoidance of barren plateaus
(BPs) [8, 9, 10]. To bring adaptors into the quantum domain, we propose to use the well known a linear
combination of unitaries2 (LCU) framework which has been well used in quantum simulation [11] and recently
adapted to quantum machine learning [12]. We depict such an approach using the fully quantum compound
circuits as Adapters as shown in Fig. 2a. One potential direction is the following. First, one could train a
low-dimensional DLA circuit (BP avoiding, classically simulatable), e.g. the fixed Hamming-weight compound
circuit, classically for a given downstream task, and then combined with a more expressive (high DLA) quantum
neural network (QNN as show in Fig. 2b), acting as a warm start, (α1UQNN + α2UQA

) |ψ⟩: Furthermore, this
framework could be used to avoid or mitigate barren plateaus [12] or to increase the difficulty of classically
simulating low-DLA models.
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2Given a sequence of unitaries, {Uk}k and coefficients {αk}k, we can apply the non-unitary operation
∑

k αkUk in a probabilistic
fashion using postselection on ancilliary qubits.


