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Quantum machine learning leverages on quantum parallelism and entanglement to enhance classical machine learning 
algorithms performance.  Quantum Convolutional Neural Networks (QCNNs) have shown significant potential in 
classification tasks by exploiting quantum parallelism and entanglement to process quantum data with short range 
entanglement structure, and avoids the notorious barren plateau problem by construction due to its logarithmic circuit 
depth. Here we [1]  compare the efficiency of QCNN with that of the hardware-efficient ansatz (HEA) in classifying the 
ground states of two quantum models. We have also studied the compression capabilities of the ground states of one 
quantum model.
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We demonstrated the effectiveness of QCNNs (with RY 
gates) in quantum phase classification and data 
compression tasks.  Consistent across both tasks, we find 
that QCNNs not only achieve similar performance to HEAs 
but also also benefit from shorter training time due to a 
simpler structure. The simulation results will be compared 
against the implementation on hardware using the 
Qibolab software.
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QCNN

• For the same number of trainable parameters, QCNN with RY gates is the most 
efficient architecture for classifying the quantum ground states
• Great reduction in training times due to much fewer trainable parameters

• HEAs show an increasing performance with expressibility (number of layers) 
but with a corresponding increasing run time per training data

• For compression tasks, we obtain high reconstruction fidelities implying that 
all evaluated models are capable of compressing TFI model ground states
• .QCNNs demonstrated faster training convergence
• This demonstrates one key advantage of QCNN architecture --- lower 

number of training parameters leading to faster convergence and less 
trainability issues, with minimal tradeoff in compression capability

• HEA consists of alternating 
layers of single-qubit rotations 
and entangling gates 

• HEA RX-RZ-RX gates replaced by 
HEA RY gates achieves good 
performance

• QCNN [2] extends the classical 
CNNs to quantum data

• We replace the default complex 
QCNN to RY and real variants 
with a smaller number of 
parameters for shorter run time

Quantum phase classification Quantum data compression

Ground states of the Transverse Field Ising (TFI) model and XXZ model are used for classification and 
data compression

Phase classification
We adopt the conventional quantum classifier setup, in which the 
test state |𝜓$%&$⟩ with label 𝑙 = ±1 is passed into the trained 
model 𝑈 𝜃  with optimized parameters 𝜃. The label 𝑝 predicted 
by the model is given by 𝑝 = 𝑠𝑖𝑔𝑛⟨𝜓$%&$ 𝑈𝕥 𝜃 𝑍(𝑈 𝜃 𝜓$%&$⟩

Data compression

In the encoding phase, the test state 𝜓$%&$  is passed into the 
trained encoder 𝑈 𝜙  with optimized parameters 𝜙, and finally 
applying reset gates to the qubits to be discarded to obtain the 
encoded state |𝜓%)*⟩ of the remaining qubits. In the decoding 
phase, 𝜓%)*  is passed with |0⟩ states of the discarded quibits 
into the trained decoder 𝑈𝕥 𝜙  to obtain the decoded test state 
|𝜓$%&$+ ⟩. The quality of encoder can be determined by the overlap 
𝜓′$%&$ 𝜓$%&$ ,
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