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Decoupling systems into independently evolving components has a long history of simplifying
seemingly complex systems. They enable a better understanding of the underlying dynamics and
causal structures while providing more efficient means to simulate such processes on a computer.
Here we outline a variational decoupling algorithm for decoupling unitary quantum dynamics –
allowing us to decompose a given n-qubit unitary gate into multiple independently evolving sub-
components. We apply this approach to quantum circuit synthesis - the task of discovering quantum
circuit implementations of target unitary dynamics. Our numerical studies illustrate significant
benefits, showing that variational decoupling enables us to synthesize general 2 and 4-qubit gates
to fidelity that conventional variational circuits cannot reach.

When studying a system of coupled harmonic oscil-
lators, a key approach is to decouple its dynamics into
various normal modes. We can then study each mode
individually, enabling a deeper understanding of under-
lying dynamics. In the era of computer simulation, this
divide-and-conquer approach has further operational im-
portance, enabling leverage of parallel processing [1, 2],
and often drastically reducing the computational costs
of simulation or optimization. Decoupling complex sys-
tems into simpler components has seen success in diverse
settings, from modeling the motion of human hands to
hydraulic simulation [3, 4].

In quantum systems, decoupling can also be immensely
beneficial. Many quantum computing and simulation al-
gorithms require the approximate synthesis of desired
n-qubit operations using shallow circuits of elementary
quantum gates. Yet, the exponential growth of Hilbert
space makes this a highly intractable task [5–7]. Mean-
while, quantum systems offer entirely new possibilities for
decoupling. Even in strongly interacting circuits, separa-
ble dynamics may exist on a non-local basis [8]. The mu-
tual information between decoupled quantum subsystems
is generally much lower than classical counterparts [9].

Here, we propose embedding a divide-and-conquer
approach to enhance existing variational circuit algo-
rithms [5, 6]. The procedure involves designing a vari-
ational decoupling algorithm that first breaks a many-
qubit interaction into smaller components (see figure 1).
We can then optimize these smaller components individ-
ually or break them down further via recursive appli-
cations of variational decoupling. We demonstrate the
method for compiling circuits approximating arbitrary
two and four-qubit gates, where it identifies circuits of
much higher fidelities than direct variational methods.

Framework – Consider being given black-box access to
some unknown n-qubit unitary quantum process U . Our
goal is to approximate this process with a sequence of el-
ementary quantum gates - subject perhaps to constraints
on circuit complexity or depth. That is, discover some
circuit W - programmable on quantum computers - that
implements U . Such a problem arises naturally in tasks
such as circuit compilation or quantum simulation [5, 6],

FIG. 1. Variational Quantum Circuit Decoupling.
Given a target complex unitary quantum operation U , the
decoupling of U involves identifying shallow pre and post-
processing operation V0 and V1, such that U ≈ V1(UA ⊗
UB)V0, for some operators UA and UB act locally on subsys-
tems A and B respectively. This procedure can be repeated
recursively, breaking down UA and UB into smaller compo-
nents, until all subsystems are sufficiently small.

where U represents a complex quantum circuit we wish
to simplify; some unknown quantum device we wish to
reverse-engineer or some natural process we wish to sim-
ulate.

Systematic solutions to this problem are clearly in-
tractable. Process tomography to determine the matrix
elements of U alone would scale exponentially with n,
as would any general method of decomposing U into el-
ementary gates. This has motivated variational quan-
tum algorithms (VQAs) for circuit discovery [5, 6]. Such
approaches typically involve two components: (a) An
ansatz, a family of quantum circuitsW (θ) parameterized
by some k-dimensional vector θ, and (b) A cost function
C that that measures the performance loss of each candi-
date circuit in approximating W . The goal is to identify
the parameter set θ so that the corresponding circuit
W (θ) has a minimal cost. Meanwhile, the cost function
is generally chosen to be normalised (takes a maximum
value of 1) with the following properties:

� Measurable and Gradient Measurable, such
that C(W ) and each partial derivative ∂

∂θi
C can be

efficiently estimated.
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� Faithful, such that C is non-negative, and
C(W ) = 0 if and only if no general n-qubit quan-
tum circuit are preferred over W .

This then allows gradient descent-based methods to find
θ within the parameterized circuit to minimize the cost.
However, the rate at which variational circuits converge
can become severely limited due to barren plateaus - es-
pecially in scenarios where circuits being optimized over
had no constraints [11–13].

Variational Decoupling – We adopt a divide-and-
conquer approach. Instead of attempting to learn a cir-
cuit decomposition for the entirety of U , we break the
circuit down into a series of smaller circuits as illus-
trated in figure 1. Specifically we first divide n-qubit
system into two subsystems A and B. We then identify
pre-processing unitary V0 and post-processing unitary V1
such that there exists UA on A and UB on B in which
V †
1 UV

†
0 most closely approximates UA ⊗ UB .

We document below a variational means to learn gate
decomposition for V0 and V1 without needing any knowl-
edge of unitary operators UA and UB . This decoupling
can proceed recursively until all localized operators are
sufficiently small for conventional variational methods.
Finally, various sub-problems are recombined to give a
full circuit decomposition of U .
The key behind the variational decoupling algorithm

is to find an appropriate cost function. First, let V0(θ0)
and V1(θ1) be circuit paramatrizations of V0 and V1 with
respective parameters θ1 and θ2. Meanwhile set W =
V †
1 UV

†
0 as the resulting quantum process formed by pre

and postprocessing of U . Since we can always engineer
W given U , V0, and V1, we can define our cost function
concerning W alone for convenience. Here we desire a
normalised cost function that (i) is faithful, such that

C(W ) = 0 when U = V1UV
†
0 = UA⊗UB or (UA⊗UB)S,

and (ii) exhibits both self and gradient measurability.
Here we propose the cost function as the decoupling cost
CD defined as

CD(W ) =

∫∫
D[W (|ψ⟩⟨ψ|A ⊗ |ϕ⟩⟨ϕ|B)W

†]d |ψ⟩d |ϕ⟩ ,

where D(ρA,B) =
4m

(4m−1)
L(ρA)+L(ρB)

2 , L(ρ) = 1− Tr
[
ρ2
]

is the linear entropy and the integration is take over Haar
random initial states |ψ⟩A on A and |Φ⟩B on B. Here m
is either the number of qubits in A or B, whichever is
smaller. We now illustrate the following:

Theorem 1. The decoupling cost CD is efficiently mea-
surable, efficiently differentiable, and faithful.

To show CD is efficiently measurable and efficiently
differentiable, we developed a method to evaluate it us-
ing a circuit with twice the size of W without the need
to prepare Harr random states, as illustrated in figure 2.
We show that this state can be prepared with a constant

depth of quantum circuit with gate determinations effi-
ciently achievable through a classical process. The gra-
dient of CD can be measured by the same circuit with a
generalised parameter-shift rule [14–17].

To establish faithfulness, first observe that the linear
entropy is used to quantify the entanglement between
two subsystems [18]. D(W (ρA ⊗ ρB)W

†) quantifies the
amount of entanglement W generates between A and B
when applied to a product state. Consequently, our cost
function CD represents the expected amount of entan-
glement generated by W when averaged across all pure
product inputs. As such, CD(W ) = 0 if and only if the
operatorW is equivalent to the identity or the swap gate
up to local unitary gates.

We can then proceed with variational decoupling by
choosing appropriate antsazes for V0(θ0) and V1(θ1);
such that W is parameterized by the joint vector θ∗ :=
θ∗
0 ⊕ θ∗

1 . Note that, just as in standard circuit compi-
lation, we may also choose to limit the gate depth of V0
and V1 should we wish for shallow circuit approximations
of U .

FIG. 2. The schematic diagram of the variational decoupling
algorithm. The qubits in the quantum computer are virtually
divided into 4 subsystems: XA,α, XB,α, XA,β , and XB,β . Two

copies of the evolution W := V †
1 UV †

0 are applied to each
copy of the system XA,i ⊗ XB,i. Let dk be the dimension of
the system Xk,i. The input state is initialized as τA ⊗ τB ,
where τk is the projector state to the symmetric subspace of
Xk,α ⊗ Xk,β . The cost function CD is measured at the end
with a destructive swap test and minimized by tuning the
parameters θ for the next iteration.
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Performance Comparisons – We demonstrate the im-
proved efficacy of our decoupling method in two distinct
scenarios:

� The exact compilation of a general 2-qubit gate -
where the ansatz is shown figure 3. Here, the cir-
cuit family is universal, and can theoretically syn-
thesize any 2-qubit unitary operator [19]. Our de-
coupling algorithm breaks this into two stages. The
first (coloured orange) decouples U into two single-
qubit circuits. The second stage (red) then opti-
mises these circuits.

� A shallow circuit approximation of a general 4-qubit
gate, where the structure of the ansatz follows the
figure 4. For both V0 and V1, we utilize four layers
of decoupling circuit, where each layer comprises a
shallow circuit and single qubit and control gates.
The circuit compilation is done via three stages.
Stage one (orange) decouples the circuit into two
generic 2-qubit gates. The second stage (red) de-
couples these 2-qubit gates further into 4 single
qubit interactions. Finally, stage 3 then optimises
each of the four single-qubit gates.

FIG. 3. Variational Compilation of a general 2-qubit unitary
with ADAM optimization. The fidelity F̄ is compared between
the direct compilation (purple for global cost functions and
blue for local cost functions) and our decoupling method (solid
lines). For each method, the training is repeated 20 times
with different initializations. Our method divides the task
into two steps, each represented by a different color. The first
phase (yellow) decouples the unitary to single-qubit unitary
operators, and the second phase (red) maximizes the fidelities.
The phase transition region is colored orange, where some of
the processes are in phase one and the rest are in phase two.
The data of each method are divided into quartiles, and the
lines represent the median of each process. The second and
third quartiles are shaded with the corresponding color.

In each setting, we select target U at random according
to the Harr measure. We benchmark our method against
standard variational approaches, where all circuit param-
eters are optimized by gradient descent to maximize the
gate fidelity F̄ simultaneously. In the standard approach,
this optimization is done by minimizing a cost function
CHST or the localized cost function CLHST [5].

FIG. 4. Variational Compilation of generic 4-qubit unitary
with ADAM optimization. Similar to the 2-qubit case, the
data of each process is collected from 20 independent training
processes, while the regions between the first and last quar-
tiles are shaded with the corresponding colors as in FIG 3.
Here, the optimisation is divided into three phases. The cir-
cuits are divided into 3 types: 4-qubit ansatzes (orange),
2-qubit ansatzes (red), and the middle single qubit gates
(green). The ansatzes are designed to explore stronger ex-
pressive power with a limited number of gates, which can be
generalized to any number of qubits [20].

Discussion – Here, a variational mean to decouple
complex quantum circuits is proposed. There are sev-
eral natural avenues for future research. The first is in
studies of noise resilience – whereby the dynamics of pro-
cesses we wish to discover or the gate-set we choose to
implement are not pure. The second is the extension of
our divide-and-conquer approach to variational settings
beyond circuit synthesis. In particular, the decoupling
method could be generalized to the digital-analog quan-
tum computing paradigm [21], where part of the quan-
tum logical circuit may be replaced by tunable hardware-
dependent evolutions. This combination of digital and
analog quantum processes enlarges the set of efficiently
implementable ansatzes for quantum compilation.
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