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ABSTRACT
Privacy preservation is essential in deploying artificial intel-
ligence with sensitive data. Quantum computations offer en-
hanced security, leveraging the no-cloning theorem to make
them an ideal choice for secure computing. Prior research has
explored Quantum Federated Learning (QFL) and Quantum
Differential Privacy (QDP) separately, but combining these
has not yet been studied. Our work integrates these tech-
niques on a quantum platform to provide robust protection
against data breaches and model inversion attacks, signifi-
cantly boosting AI security and efficiency. We demonstrate
this by successfully classifying the Cats vs Dogs dataset on a
quantum-classical hybrid model, achieving over 98% accuracy
and maintaining epsilon values under 1.3. Our results validate
the effectiveness of federated, differentially private training on
Noisy Intermediate-Scale Quantum (NISQ) devices.

1. MOTIVATION

Quantum computing demonstrates potential advantages over
classical systems in specialized, complex tasks essential to the
evolution of quantum technology. Their security, reinforced
by the no-cloning principle, ensures robust protection against
unauthorized data access. Since there are limitations in current
NISQ devices, we use the variational quantum algorithms
(VQA) to facilitate computations in limited qubits.

This work aims to achieve quantum model security via the
learning process. We join the merits of two distinct privacy-
preserving classical techniques: Federated Learning (FL) and
Differential Privacy (DP). As a result, we can effectively shield
against both model inversion attacks and data leakage, while
operating on an inherently secure quantum platform.

2. APPROACH

There are three major components in this work to be integrated.

Federated Learning (FL)
FL [1] processes extensive datasets by distributing tasks across
multiple nodes, decentralizing training data among clients.
It begins with initializing a global model Θ ∈ Rn and dis-
tributing identical copies Θ1, . . . ,ΘK to K clients, where
Θ = Θ1 = · · · = ΘK . Each client j from [K] = {1, . . . ,K}

independently trains its model Θj to produce updated models
Θ̃j ̸= Θj . These are aggregated into a new global model
Θ̃, cycling through several iterations. This decentralized ap-
proach enhances security and suits quantum machine learning
on NISQ devices, which efficiently process smaller datasets.
Notably, quantum federated learning without differential pri-
vacy maintains testing accuracy [2], illustrated in Fig. 1.

Fig. 1. The concept of QFL.

Differential Privacy (DP)
Considering two datasets: one containing X and the other with-
out X , it is crucial that the difference in their model outputs is
limited to a specific bound, ϵ. Without such a restriction, an
individual with access to the model could potentially deduce
whether X was included in the dataset.
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Fig. 2. The concept of differential privacy.
The ϵ-differential private definition follows from [3]:

Definition 2.1. Let M be a randomized algorithm whose
(functional) image is a collection of (probabilistic) events S
and the domain is a collection of datasets. IfM is said to be
(ϵ, δ)-differentially private for any dataset D1, D2 that differ



on a single data point (denoted as ||D1|− |D2|| = 1), we have

Pr[M(D1) ∈ S] ≤ eϵ · Pr[M(D2) ∈ S] + δ (1)

The quantity δ ≥ 0 has the meaning of failure probabil-
ity [3], while ϵ indicates an upper bound on the privacy loss.
By adding Gaussian noise and gradient clipping into the train-
ing optimization [4], a classifier can be made to guarantee
differential privacy Eq. (1). In [4], a fact is proved:

Theorem 2.1. There exists c1 and c2 so that given the number
of epochs T and the sampling probability q = L/N where L is
the batch size and N is the total number of examples, for any
ϵ < c1q

2T , randomized algorithmM is (ϵ, δ)-differentially
private for any δ > 0 if we choose the noise level σ:

σ ≥
c2q

√
T log

(
1
δ

)
ϵ

The value of ϵ is a function of the following training
parameters: the total number of examples, batch size, noise
multiplier, number of epochs, and δ. The main correlation is
the inverse relationship of ϵ and the noise injected to the input.

Variational Quantum Circuits (VQC)
Variational quantum circuits (VQC) serve as the quantum coun-
terpart to the classical neural networks. A VQC takes three ma-
jor steps to learn data: (1) the encoding part, translating a clas-
sical vector x ∈ Rm into a quantum state |ξ⟩ by an embedding
function x 7→ E(x) so that |ξ⟩ = E(x) |0⟩⊗n (see Fig. 3).
In this work, we follow the procedure in [2]. (2) a learnable
(variational) quantum gate W (ϕ) including multiple single-
qubit rotations such that Wij(ϕ

(ij)) = ei(σx αij+σy βij+σz γij).
Here, σk’s are Pauli matrices with i, j as the variational
block and qubits index and ϕij = (αij , βij , γij) ∈ R3 as
the corresponding learnable parameters. The final step: (3)
measurement operations to retrieve the circuit information,
where the Pauli-Z is utilized for the expectation values in
this work. Collectively, the three steps give us a learnable
quantum function

−−−−→
f(x;ϕ) =

(〈
Ẑ1

〉
, · · · ,

〈
ẐN

〉)
with〈

Ẑk

〉
=

〈
0
∣∣∣E†(x)W †(ϕ)ẐkW (ϕ)E(x)

∣∣∣ 0〉. By varying
parameters ϕ, the minimization of the objective function can
be achieved at ϕ∗ = argminϕ L(f(x;ϕ)) where L is the loss
function.

Fig. 3. A generic structure of a VQC. A VQC comprises an
encoding module denoted as E(x), a trainable component rep-
resented as W (ϕ), and subsequent measurement operations.

The VQC circuit is known to enhance differential privacy
when encoding classical datasets [5] and exhibit greater expres-
siveness than classical neural networks [6, 7, 8, 9]. VQCs can

also be trained on smaller datasets with high efficiency [10]
and are applied across various domains like classification, rein-
forcement learning, natural language processing, and sequence
modeling.

We integrate the DP and FL in QML via VQC to form our
proposed method as Algorithm 1.

Algorithm 1 QFL-DP
Input: Examples {x1, . . . , xM}, loss function L(θ) =

1
N

∑
i L(θ, xi).
Parameters: Clients K, selected J , local epochs T ,

rounds R, learning rate ηt, noise scale σ, group size L, gradi-
ent norm bound C.

Partition: From M examples, construct D1, . . . ,DK

among K clients randomly, |Di| = N = M/K
Initialize: Quantum global model Θ0 ∈ Rn

1: for r ∈ [R] do
2: Model distribution:
3: Make K identical copies of Θr for local set
4: {Φr1, . . . ,ΦrK} and send Φrk to client k
5: Take random sample J from K clients
6: for j ∈ [J ] do
7: for t ∈ [T ] do
8: DP client update:
9: Perform DP-SGD(N,L, ηt, σ, L,C) on

10: Φrj ← Φ̃rj ̸= Φrj

11: end for
12: end for
13: Model aggregation:
14: Θr+1 = averaging the parameters across
15: each model in {Φ̃rj}Jj=1

16: end for
Output: ΘR and compute the overall privacy cost (ϵ, δ)

using a privacy accounting method.

It is worth mentioning, due to the current constraints in
NISQ devices we incorporate classical networks (pre-trained
VGG16 model) for dimension reduction, prior to feeding data
into a VQC so that our utilization of VQC becomes a hybrid
quantum-classical transfer learning [11], see Fig. 4.
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Fig. 4. Hybrid Quantum-Classical transfer learning.

3. EXPERIMENTS, RESULTS AND IMPACT

Experiments
We use 23,000 Cats vs Dog images [12] to demonstrate the
proposed QFL across 100 clients. Training occurs in rounds,
with randomly selected groups of 5 clients. At the start of
each round, the global model is shared with all clients, but



only the chosen 5 perform local SGD training for a set num-
ber of epochs. The parameters from these selected clients
are aggregated to update the global model for the next round.
We validate our the QFL by exploring different settings, in-
cluding varying the number of local epochs (1, 2, and 4) and
incorporating a non-differentially private model. Each training
process is repeated three times to average the outputs and re-
duce variance. Additionally, we conduct experiments to assess
the impact of noise levels during training.

Fig. 5. All DP plots are (ϵ = 1.24, δ = 10−5)-DP and acquire
test accuracy converging at approximately 0.98.

Fig. 6. [From left to right, σ = 0.15, 1, 4] All plots indicate
test accuracy convergence at approximately 0.98.

Results
QFL-DP with different local epochs We first compare

the results of QFL with DP training with various local epochs
and the non-DP QFL. The results are shown in Fig. 5. We
observe that all of our models converge to test accuracies
of approximately 0.98 with ϵ’s hovering around 1.24. It is
important to note that the epsilon calculated was the global
one, which is a function of total rounds. We also observe that
as local epochs increase, a reduction in the number of rounds
required to reach convergence, with a decline in variance. Fi-
nally, we observe that differentially private training converges
slower and with higher variance, which aligns with expecta-
tions attributed to the introduction of noise. Additionally, our
results are consistent with those of Chen et al. [2], which
show that the testing accuracy and loss of federated training
approximately converge to that of non-federated training.

QFL-DP with different noise levels We further study
the correlation between the loss of privacy bound and the
accuracy/loss of our models. We study the impact of noise
via the increase in σ or equivalently the decrease in ϵ. As
shown in Fig. 6, higher ϵ results in a slower, higher-variance
training process. Generally, increasing the noise enhances
privacy but will decrease classification accuracy. However,
our results show that the final accuracies of the three cases are
not different. Possible reasons are the simplicity of our Cats
vs Dogs example and the capabilities of our model architecture.

Impact
Our work demonstrates the effectiveness of differentially pri-
vate quantum federated learning in mitigating privacy con-
cerns while maintaining competitive performance for NISQ
devices. We recognize the need to explore more complex tasks
tailored to quantum algorithms and conduct comparative as-
sessments against classical methods to advance the field of
privacy-preserving quantum machine learning.

4. REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas, “Communication-efficient learning of deep net-
works from decentralized data,” in Artificial intelligence and statistics.
PMLR, 2017, pp. 1273–1282.

[2] Samuel Yen-Chi Chen and Shinjae Yoo, “Federated quantum machine
learning,” Entropy, vol. 23, no. 4, pp. 460, 2021.

[3] Cynthia Dwork, Aaron Roth, et al., “The algorithmic foundations of
differential privacy,” Foundations and Trends® in Theoretical Computer
Science, vol. 9, no. 3–4, pp. 211–407, 2014.

[4] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang, “Deep learning with differential
privacy,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 308–318.

[5] Armando Angrisani, Mina Doosti, and Elham Kashefi, “Differential
privacy amplification in quantum and quantum-inspired algorithms,”
arXiv preprint arXiv:2203.03604, 2022.

[6] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik, “Expressibility
and entangling capability of parameterized quantum circuits for hybrid
quantum-classical algorithms,” Advanced Quantum Technologies, vol.
2, no. 12, pp. 1900070, 2019.

[7] Trevor Lanting, Anthony J Przybysz, A Yu Smirnov, Federico M
Spedalieri, Mohammad H Amin, Andrew J Berkley, Richard Harris,
Fabio Altomare, Sergio Boixo, Paul Bunyk, et al., “Entanglement in
a quantum annealing processor,” Physical Review X, vol. 4, no. 2, pp.
021041, 2014.

[8] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, “The
expressive power of parameterized quantum circuits,” arXiv preprint
arXiv:1810.11922, 2018.

[9] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio
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