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Quantum Machine Learning (QML) algorithms have recently emerged as an exciting solution to the 
increasing demand for computational power and efficiency across a wide range of complex tasks 
within the field of machine learning. QML algorithms are built upon the fundamental quantum 
phenomena of superposition and entanglement not available to classical machine learning 
algorithms. As such, they are expected to produce improvements in model performance compared 
to their classical counterparts for specific classes of problems. Indeed, QML has already 
demonstrated quantum advantage in various settings, such as speed-ups in supervised machine 
learning through quantum kernel estimation [1] and enhanced robustness of QML models to 
adversarial attacks [2,3].  
 
However, before such enhancements can be exploited and made useful, there are significant 
barriers that must be overcome. As with most quantum algorithms, one of the key challenges we 
face is that QML algorithms are very prone to noise, producing meaningless output when run on 
noisy quantum devices, especially if circuit depths are high. Although error mitigation and 
suppression techniques may be used to address this problem, we require further techniques from 
Quantum Error Correction (QEC) theory to sufficiently overcome these challenges.  
 
QEC protocols have been successfully applied to a small number of quantum algorithms; for 
example, the [[4,2,2]] stabiliser code with Variational Quantum Eigensolvers [4,5] and the Steane 
Code with a quantum Fourier Transform algorithm [6]. However, there has not yet been any 
experiment demonstrating the application of a quantum error correction or quantum error 
detection code to a quantum machine learning problem.  
 
We will present the results of our experiment in applying the [[4,2,2]] stabiliser code to detect 
errors during the training of a Variational Quantum Classifier (VQC; see Fig 1). Specifically, we will 
demonstrate that the classifier can be trained with the [[4,2,2]] code to make accurate predictions 
on noisy quantum hardware, similar to the expected performance in an ideal, noiseless 
environment.  
 

 
Fig 1. The structure of the Variational Quantum Classifier we trained with the [[4,2,2]] stabiliser code. The VQC outputs a 

parity classification for the 2 input qubits and requires only one rotational parameter to successfully train. 



 
We will present a novel procedure for logically encoding rotation gates for [[n,k,d]] codes in general 
(see Fig 2), evaluate the performance of the VQC in the presence of gate errors and depolarising 
noise, quantify the maximum probability of gate errors that is tolerable for training a VQC with 
quantum error detection, and identify the limitations of the [[4,2,2]] code in protecting the training 
and prediction processes from random errors.  
 

 
Fig 2. The logical encoding of the RX gates, requiring one ancilla qubit per gate to implement for the [[4,2,2]] logical 

encoding. 
 
We find that training the VQC with the [[4,2,2]] code under probabilistic gate errors or depolarising 
noise produces substantial improvements in accuracy compared to the case where no stabiliser 
code-based error detection is used. As an example, we display in Fig 3 the enhanced training 
accuracy of the VQC when trained with the stabiliser code, under a probabilistic gate error model 
with X, Y and Z error probabilities of 0.0025 (total gate error probability of 0.0075). The training 
accuracies shown are averages of 10 independent training runs, each simulated with 1000 shots.  
 

 
Fig 3. Comparison of the training accuracy of the VQC when trained with the [[4,2,2]] stabiliser code (green) and when 

trained without any stabiliser code (orange), under a probabilistic gate error model with X, Y and Z error probabilities of 
0.0025 each. The training accuracy for a zero-noise environment is also displayed (blue dashed line). From left to right, 

we show the training accuracies when using 1, 3, and 5 pairs of X and Z stabiliser measurements. The accuracy improves 
as more stabiliser measurements are used to detect errors. 

 
The results from this work are the first step in understanding how error detection and error 
correction impact QML model training and prediction in noisy environments. In future, we aim to 



build from these results to explore the implementation of more complex error detecting and error 
correcting codes with a variety of variational quantum machine learning architectures.  
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