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The Transformer model, known for its powerful attention mechanism, has achieved state-of-the-art
performance in various artificial intelligence tasks but faces challenges such as high computational
cost and memory usage. Researchers are exploring quantum computing to enhance the Transformer’s
design. We propose the Molecular Quantum Transformer (MQT), which utilizes quantum circuits to
implement the attention mechanism for modeling interactions in molecular quantum systems. MQT
can efficiently calculate ground state energies for all configurations of molecules. In the calculation
of ground state energies for H2, LiH, BeH2, and H4, MQT outperforms the classical Transformer,
demonstrating a potential advantage of the quantum structure. Our method offers an alternative to
existing quantum algorithms like quantum phase estimation and variational quantum eigensolver,
opening new avenues in quantum chemistry and materials science.

Background.— The Transformer model [1] has been recognized as a remarkable advancement in artificial intelli-
gence. Its key power lies in its “attention mechanism”, which discerns the relative importance of different parts of
its input and the connection strengths between them. This mechanism has been successfully applied to both natural
language processing and visual tasks, delivering state-of-the-art performance across a variety of datasets. Despite its
many advantages and successes, the current implementation of the Transformer has several notable disadvantages,
such as high computational cost, significant memory usage, the requirement for large datasets, and a large number of
training parameters. Considering these aspects, researchers are actively seeking improved designs for the Transformer.

In the marriage of quantum computing and machine learning to establish the quantum machine learning (QML)
research field, there is hope to build the Transformer model on quantum computers to solve problems impractical
for classical computers. Several implementations have been proposed in this area, including quantum self-attention
neural networks [2, 3] and quantum vision Transformers [4]. However, these implementations still have very limited
performance on tasks involving classical data, such as text and image classification.

Since there is no clear evidence that classical data, such as text and images, inherently require quantum effects, the
research community is shifting to using QML methods that utilize quantum effects on data originating from quantum
systems. In this line, we propose a design for a quantum Transformer model called Molecular Quantum Transformer
(MQT) to calculate molecular ground state energies. MQT leverages the attention mechanisms through quantum
circuits to model interactions within molecular quantum systems more efficiently.

Remarkably, with access to random molecular configurations during each training iteration, MQT can be used to
obtain the ground state energies for all molecular configurations, thereby reconstructing the potential energy surface
(PES) of molecules. Our approach serves as an alternative to current algorithms for calculating ground state energies,
such as Quantum Phase Estimation (QPE) and Variational Quantum Eigensolver (VQE). For instance, independently
running QPE or VQE for each configuration would incur significant computational costs. Instead, estimating the
PES for all molecular configurations is managed by the efficient processing capabilities of MQT, which can effectively
capture and model complex interactions in quantum systems.

Molecular Quantum Transformer (MQT).— The MQT model for calculating the ground state energy of
molecules is illustrated in Fig. 1. As a preprocessing step, we use PennyLane’s built-in functions [5] to compute the
qubit representation with the number of qubits nq and the Hamiltonian H from the molecular structure. The input
token electron∗-nucleus∗ represents the electronic state as a n×m two-dimensional array of 8-dimensional features.
Here, n and m denote the number of electrons and nuclei, respectively. Consequently, the array of all tokens forms an
n×m×8 matrix. Similar to token preparation in Ref. [6], in the token matrix, each 8-dimensional feature input vector
x is calculated from a vector concatenating the relative positions of electrons to each nucleus and their distances,
processed through a fully-connected (FC) layer. The input x is then processed using a quantum transformer of L
layers (L = 6 in our experiments). The output y(L) of the final layer is then exponentially attenuated by the distance
rae between the nuclei and electrons as e−rae × y(L). An FC layer applies this attenuated feature to obtain the nq
qubits state vector. After converting the features of each token into state vectors, the average of all these vectors is
calculated to obtain a nq qubits state vector. It is then added with the Hartree-Fock state vector to generate the final
electronic state vector via amplitude embedding. The expectation value of H is then calculated from this amplitude
embedding representation to be minimized.

The architecture of the quantum Transformer component in MQT is depicted in Fig. 2(a). First, the input features
of classical data are converted into quantum states through an embedding layer. Query, Key, and Value transforma-
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FIG. 1. The Molecular Quantum Transformer (MQT) model for the calculation of the ground state energy

Quantum

Query

Embed. Value|0...0>

~Num. of 
tokens |0...0>

|0...0>

~

|0...0>

+

+

Key|0...0>

~

|0...0>

+

+

Self-
Attention

Embed. Value

Query

Key

~

x1

xs

y1

yn

~

Classical Classical

Meas.

Meas. +

+

Query

xi

|ψi, j-1>

Key† Embed.†

|0>

Reset

Embed.|0...0> Value

✕

✕

Embed.|0...0>

xj

MPS

Attended value

Attention

Value

|ψi, j>

FIG. 2. (a) Quantum Transformer using the quantum attention mechanism. (b) The update of Attended value.

tions, constructed using quantum ansatz, are then performed to calculate the Attended value using the self-attention
mechanism. The result is measured and converted back into classical features, which are added to the input features
via a residual connection to generate the features for the next layer’s input.

The detailed calculation of the Attended value update (|ψi,j−1⟩ → |ψi,j⟩) is shown in Fig. 2(b). First, for a
selected input token xi from the token sequence, an angle embedding by Y rotation gate RY (Embed.) is per-
formed using the second auxiliary token register. Sequentially, a Query transformation and an adjoint matrix of
Key transformation, both of which are constructed by a single layer of strongly entangling layer (StrEnt) ansatz,
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FIG. 3. Potential energy curves and estimation errors (∆E) for varying interatomic bond lengths in (a) H2 (b) LiH, (c) BeH2,
and (d) H4 molecules using the quantum (red lines) and classical (blue lines) Transformers.

and an adjoint matrix of the angle embedding (Embed.†) for another selected input token xj from the token se-
quence are applied to compute the Hadamard product of the query and key. This product is then converted into
a 1-qubit Attention representation using a 2-bond matrix product state (MPS) ansatz implemented with learnable
RY and an additional auxiliary qubit. Next, a Value transformation for xj is performed using the first auxiliary
token register with the angle embedding (Embed.) and six layers StrEnt ansatz. Finally, a controlled SWAP gate
is used to apply the feature update corresponding to the Attention representation and the value to the Attended value.

Results.— In the following numerical experiments to estimate the potential energy curves, we compare the perfor-
mance of MQT with the corresponding implementation using the classical Transformer (with 8 hidden dimension and
single attention head) instead of the quantum Transformer module depicted in Fig. 1.

In the second quantization of Hamiltonian, we use the Bravyi-Kitaev transformation for the molecules H2，LiH，
and BeH2, and Jordan-Wigner transformation for H4. In each iteration of the Transformer, the token matrix is created
from the configuration with a random bond length in (0.0, 5.0) [Bohr]. After the training, the potential energy curves
for bond lengths from 0.1 to 4.9 [Bohr] with 0.1 [Bohr] increments were estimated using the trained model. We use
AdamW optimizer with a weight decay rate of 0.001. The learning rate is set to 0.008 for the classical Transformer
in the case of H2; and 0.004 otherwise. In the optimization, we also employ the method in Ref. [7] to run 4 processes
in parallel on a single GPU, with each process performing 2500 iterations, totaling 104 iterations.

Figure 3 depicts the energy estimation compared to the theoretically calculated ground state energy of the Hamil-
tonian for each molecule. In the STO-3G basis set, MQT demonstrates lower estimation errors than the classical
Transformer for (b) LiH, (c) BeH2, and (d) H4. In the 6-31G basis set for (a) H2, the estimated errors of the MQT are
almost equivalent to those of the classical Transformer (note that the scaling of the y-axis in each plot is different).
From these results, we can conclude that the MQT performs as well as, or even better than, the classical Transformer,
demonstrating the potential benefits of incorporating quantum structure into the Transformer.

Conclusion.— We propose the Molecular Quantum Transformer (MQT), which leverages quantum circuits to
revolutionize the calculation of ground state energies for all molecular configurations, offering potential improvements
in accuracy over classical Transformers. This approach could open new avenues in quantum chemistry and materials
science, where accurate understanding of ground state energies is crucial.
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