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Abstract
Quantum state estimation is an indispensable task in quantum information processing. One solid approach is to
use Bayesian inference, quantifying uncertainty in a natural way from experimental data. So far, several quantum
state models and prior distributions have been proposed to achieve practical and efficient Bayesian quantum state
estimation. However, the statistical behavior of quantum information-theoretic properties of the estimated state,
such as quantum relative entropy, has not been clarified yet when the quantum state models are over-parameterized.
In the present work, we propose a mathematical theory of singular Bayesian statistics in quantum state estimation
based on an algebraic geometrical method. As a main result, we give an asymptotic expansion of a quantum
generalization and empirical loss, defined in terms of the quantum relative entropy between the target state and the
estimated state. Consequently, we construct an asymptotically unbiased estimator of the quantum generalization
loss, quantum widely applicable information criteria (QWAIC). Our results provide a new direction to evaluate the
generalization capacity of quantum state models using the quantities introduced in algebraic geometry.
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1 Introduction
Quantum state estimation, or state tomography, [1]
is one of the fundamental tasks for advancing quan-
tum technologies. Generally, it requires an exponential
amount of measurement data in the system size, which
makes it difficult to conduct large-scale state estimation.
However, there remains a demand for efficient methods
for quantum state estimation. In this regard, Bayesian
approaches [2, 3, 4, 5] offer a recipe for practical quantum
state estimation taking advantage of prior information.

A parameterization is a key step in quantum state
estimation, thus many parametric quantum state models
have been proposed so far, including the recent develop-
ment of neural-network quantum states [6] and quantum
Boltzmann machines [7]. Despite these developments, it
is difficult to determine which model to use, with little
prior knowledge about the target system. This prob-
lem has led several studies [8, 9, 10, 11] to address it
using a statistical method called model selection, for
choosing the best model among candidates based on the
observed data. In particular, the first-named author pro-
posed quantum information criteria (QIC) [11] based on
the novel work by Akaike on AIC [12, 13]. Information
criteria represent the bias and variance trade-off and
enable the prediction of the performance of an estimated

model. QIC evaluates the quality of the estimated quan-
tum state in terms of the quantum relative entropy, a
quantum analog of AIC.

However, the proposed methods by these studies
assume the regularity condition and often fail to evalu-
ate the model capacity correctly. In classical statistics,
a model is said to be regular if the map from param-
eters to probability distributions is one-to-one and its
Fisher information matrix is positive definite, in partic-
ular, it has an inverse. If otherwise, the model is said to
be singular. It is known that these singularities in fact
appear, for example in mixed Gaussian distributions. In
practice, it often appears in the analysis of the neural
networks or Bayesian network [14], and in particular,
Transformer [15, 16]. For example, the singular learn-
ing theory clarifies phase transitions in machine learning
[17]. In this vein, we can easily imagine that the reg-
ularity condition is not likely to be satisfied when one
uses quantum state models with many parameters, such
as neural-network quantum states and quantum Boltz-
mann machines [18, 19]. This motivates us to investigate
singular models in quantum state estimation, with the
ultimate goal of developing QIC for singular models.

In the present work, we propose a mathematical
and Bayesian framework for singular models to estimate
quantum states. We build upon the celebrated singu-
lar theory for classical Bayesian statistics [14, 20, 21]
established by Watanabe to investigate the statistical
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behavior of quantum information-theoretic properties.
For this purpose, we formulate the Bayesian quantum
state estimation and define a quantum generalization and
empirical loss based on the quantum relative entropy.
Our main result describes the asymptotic expansions
of quantum generalization and empirical loss based on
an algebraic geometrical method. From this description,
we propose an asymptotically unbiased estimator, which
is called quantum widely applicable information criteria
(QWAIC), of the quantum generalization loss. This is
a generalization of widely applicable information crite-
ria (WAIC) [14], constructed by Watanabe, for classical
singular learning theory. This allows us to evaluate the
trade-off between the model adaptability to the observed
data and the model capacity.

2 Singular learning theory
We briefly summarize the Bayesian statistics for
unknown classical probability distribution [20, 22]. Our
goal is to extend this theory to investigate quantum infor-
mation, discussed in the next section. Assume, given n
i.i.d. samples xn = {x1, ..., xn} from an unknown proba-
bility distribution q(x), one wants to predict q(x) using a
pair of a statistical model p(x|θ) and a prior distribution
π(θ), where θ ∈ Θ ⊂ Rd and θ ∼ π(θ). Then, the pos-
terior distribution and posterior predictive distribution
are immediately defined by

p(θ|xn) :=
1

p(xn)
π(θ)

n∏
α=1

p(xα|θ),

p(x|xn) :=

∫
Θ

p(x|θ)p(θ|xn)dθ

where p(xn) :=
∫
π(θ)

∏n
α=1 p(xα|θ)dθ is the marginal

likelihood. For this purpose, the classical generalization
loss Gn and empirical loss Tn are given by

Gn := −EX [log p(X|xn)], Tn := − 1

n

n∑
α=1

log p(xα|xn).

To study the asymptotic behavior of Gn and Tn, let us
introduce the Kullback-Leibler divergence and a certain
parameter set

KL(q∥p(·|θ)) := EX

[
log

q(X)

p(X|θ)

]
,

Θ0 :=

{
θ0

∣∣∣ θ0 = argmin
θ∈Θ

KL(q∥p(·|θ))
}
. (1)

The function q(x) is said to be regular for p(x|θ) if the
following conditions are satisfied:

1. Θ0 consists of a single element θ0,
2. the Hessian matrix ∇2KL(q∥p(·|θ0)) is positive defi-

nite, and
3. there is an open neighborhood of θ0 in Θ.

If otherwise, we call singular. Notably, in singular cases,
the posterior distribution cannot be approximated by
any normal distribution even in the asymptotic limit, and
moreover, Θ0 contains singular points in general, which
forces the estimation to be difficult [16].
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Fig. 1 Our setting in quantum state estimation

Then, even if q(x) is singular for p(x|θ), the asymp-
totic behaviors of Gn and Tn are as follows:

Gn = −EX [log p(X|θ0)] +
1

n
(λ+R− V ) + oP (1/n),

(2)

Tn = − 1

n

n∑
α=1

log p(xα|θ0) +
1

n
(λ−R− V ) + oP (1/n)

(3)

where λ, R, and V are defined in [23, 24]. Based on this,
Watanabe [14, 20] established the notion of widely appli-
cable information criteria (WAIC) for singular models.
It is an asymptotically unbiased estimator of Gn:

WAIC := Tn +
1

n

n∑
α=1

Var(log p(xα|θ)),

En[Gn] = En[WAIC] + o(1/n).

Here Var(·) is the posterior variance, and En[·] in the sec-
ond equation is the expectation over the sets of n training
samples. Hence, it is important to study and analyze the
behavior of Gn and Tn for model selection. Note that
R and V are characterized by the empirical process of
the renormalized log-likelihood functions. The quantity
λ is called the real log canonical threshold, which is a
well-known birational invariant, represents how bad the
singularity of a given Q-divisor is, in algebraic geometry
or minimal model program [25, 26]. This measures the
effective dimension of the parameter space of a model.

3 Main results
In the present work, we formulate the task of Bayesian
quantum state estimation as follows (see Fig. 1). Let ρ
be an unknown target state and xn = {x1, ..., xn} be
a finite number of measurement data obtained through
a tomographically complete (T.C.) measurement {Πx}
with uniform weights on ρ. In other words, the mea-
surement data xn is a set of the i.i.d. samples from
the corresponding true probability distribution q(x) :=
Tr(Πxρ). To predict ρ, one prepares a pair of a paramet-
ric quantum state model σ(θ) and a prior distribution
π(θ). Let us denote by p(x|θ) := Tr(Πxσ(θ)) the cor-
responding probability distribution of the model σ(θ).
In addition, we introduce an alternative representation
of the measurement data using the classical shadow
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Fig. 2 Resolution of singularities of a parameter space [30]

[27] by ρ̂n = {ρ̂1, ..., ρ̂n} where ρ̂α is called a classi-
cal snapshot, corresponding to xα for each α. With the
posterior distribution p(θ|xn) defined in the previous
section, the posterior predictive quantum state, or simply
the Bayesian mean, σB is naturally defined by

σB :=

∫
Θ

σ(θ)p(θ|xn)dθ.

Now, the problem is the evaluation of the quantum
relative entropy

D(ρ||σB) := Tr(ρ(log ρ− log σB)),

implicitly assuming supp(ρ) ⊆ supp(σB). Since the first
term of D(ρ||σB) does not depend on σB , it is enough
to evaluate the second term, which we call the quantum
cross entropy (QCE). Using QCE, we further define the
quantum generalization loss GQ

n and training loss TQ
n :

GQ
n := −Tr(ρ log σB), (4)

TQ
n := − 1

n

n∑
α=1

Tr(ρ̂α log σB). (5)

Generally, if our quantum state model σ(θ) is over-
parameterized, the regularity condition, defined in the
previous section, is no longer satisfied [19], and thus we
need to consider σ(θ) as a singular model.

Here we give asymptotic expansions of GQ
n and TQ

n

around θ0 defined in Eq. (1), as Eqs. (2) and (3) in
the classical case. Let us write the Kullback-Leibler
divergence

K(θ) := KL(p(·|θ0)∥p(·|θ)) = KL(Tr(Πxσ(θ0))∥Tr(Πxσ(θ)))

and the quantum relative entropy KQ(θ) =
D(σ(θ0)∥σ(θ)). In singular cases, Θ0 generally con-
tains singular points. Applying Hironaka’s theorem on
a resolution of singularities [28, 29], we get a proper
holomorphic morphism g : Θ̃ → Θ so that g−1(Θ0) is
a normal crossing divisor; see Fig. 2 for the case of a
nodal curve y2 = x2(x + 1) [30]. Let u be a parameter
of Θ̃. Then, for k, kQ ∈ Zd, we have

K(θ) = K(g(u)) = uk, KQ(θ) = KQ(g(u)) = ukQ

by using multi-indices. Here, we consider the case that
there exists a parameter θ ∈ Θ so that σ(θ) = ρ as
assumed in AIC. Now, we shall prove the following.

Theorem 1. Even when q(x) is singular for p(x|θ), the
following asymptotic expansions hold:

GQ
n = −Tr(ρ log σ(θ0)) +

1

n
(λQ +RQ

1 )−
1

2
V Q + oP (1/n),

TQ
n = − 1

n

n∑
α=1

Tr(ρ̂α log σ(θ0))

+
1

n
(λQ +RQ

1 −RQ
2 )−

1

2
V Q + oP (1/n)

Here λQ := λE [ukQ−k] with the posterior mean E [·],
V Q := Tr(ρVar[log σ(g(u))]) = OP (1/n), and RQ

1 and
RQ

2 are characterized by the empirical process of the
renormalized log-likelihood functions and its quantum
analog using the classical shadow. Note that when k =
kQ, the quantity λQ coincides with λ introduced in [24].
Therefore, our formulas generalize a crucial part of classi-
cal singular learning theory to the case of quantum state
estimation.

Now, let us define QWAIC as follows.

QWAIC := TQ
n +

1

n

n∑
α=1

Cov (log p(xα|θ),Tr(ρ̂α log σ(θ))) .

Theorem 2. Under a certain assumption, QWAIC is an
asymptotically unbiased estimator of GQ

n . In other words,

En[G
Q
n ] = En[QWAIC] + o(1/n).

We here remark that QWAIC can be computed by
given samples. The second term of QWAIC is an estima-
tor for RQ

2 with the posterior covariance Cov(·, ·). Note
that, as discussed in [11] for regular models, QWAIC is
expected to incorporate the optimality of the measure-
ment into a model selection criterion, which does not
appear in WAIC.

4 Outlook
In Bayesian quantum state estimation for singular mod-
els, we provided the asymptotic approximation of the
generalization loss and empirical loss in Eqs. (4) and
(5) based on the classical singular Bayesian statistics
[20, 21]. This leads us to the definition of an asymptoti-
cally unbiased estimator QWAIC. Notably, the algebraic
geometrical quantity λQ corresponds to the ratio of quan-
tum Bogoliubov Fisher information to classical Fisher
information in regular cases as in [11]. This suggests
the connection between algebraic geometry and quantum
information geometry. Since many quantum state mod-
els, such as quantum Boltzmann machines, have many
parameters in practice and are not likely to satisfy the
regular condition, finding an efficient estimator for the
generalization loss is a highly demanding task in quan-
tum state estimation. we expect that this work provides
a new direction in evaluating the model selection of
quantum singular models.
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