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Figure 1. A depiction of the intuitive difference between a regu-
lar quantum classifier (top panel) and a single-shot one (bottom
panel). In both cases, data is embedded into a quantum system
through a quantum feature map. In a regular classifier, the pro-
cedure that extracts the label has to be repeated often and then
aggregated into a prediction by a majority vote. In a single-shot
classifier on the other hand, a single pass through the quantum
model is sufficient to extract the label near-deterministically.

• Introduction Quantum machine learning aims to
improve learning methods through the use of quantum
computers. If it is to ever realize its potential, many
obstacles need to be overcome. A particularly pressing
one is the measurement problem that arises because the
outputs of quantum learning models are inherently ran-
dom. As such, many executions of quantum learning
models have to be aggregated to obtain an actual pre-
diction. In this work, we analyze when quantum learn-
ing models can evade this issue and produce predictions
in a near-deterministic way – paving the way to single-
shot quantum machine learning (see Figure 1). We
give a rigorous definition of single-shotness in quantum
classifiers and show that the degree to which a quan-
tum learning model is near-deterministic is constrained
by the distinguishability of the embedded quantum
states used in the model. Opening the black box of
the embedding, we show that if the embedding is real-
ized by quantum circuits, a certain depth is necessary
for single-shotness to be even possible. We conclude
by showing that quantum learning models cannot be
single-shot in a generic way and trainable at the same
time.

• Quantum Classifiers A classification task can be
formalized by considering data from a data domain
x ∈ X with labels from a label domain y ∈ Y which
we assume to be discrete. A quantum classifier is de-
fined as a function that maps classical data to quantum
states via a quantum feature map and assigns labels
by processing measurement outcomes. Formally, the
probability of obtaining the label y upon preparing ρ(x) is given by Tr[ρ(x)Πy], where Πy is a positive operator-
valued measure (POVM) element describing the combination of measurement and post-processing on a mathematical
level. The predicted label can be formalized as f(x) = argmaxy′ Tr[ρ(x)Πy′ ]. The probabilistic nature of quantum
classifiers arises because they output random variables rather than deterministic labels, necessitating multiple runs
and majority voting to determine the most likely label.

•Quantum Multi-Hypothesis Testing Quantum classifiers perform tasks analogous to quantummulti-hypothesis
testing, where the objective is to distinguish between multiple quantum states. It comes to little surprise that the per-
formance of quantum classifiers can be analyzed through the lens of hypothesis testing. The Bayesian multi-hypothesis
testing error is given by:

P ∗
e ({pjρj}rj=1) = min

{Πj}

1−
r∑

j=1

pjTr[Πjρj ]

 , (1)

where {pjρj} are the quantum states we are tasked to distinguish with associated probabilities. The usefulness of
hypothesis testing stems from the fact that we have good lower bounds on the multi-hypothesis testing error. For
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the binary case, we have the Helstrom-Holevo Theorem [1] that relates the minimal error of binary hypothesis testing
P ∗
e (pρ, (1− p)σ) to the trace distance of the quantum states.

• Single-shot Quantum Machine Learning The concept of single-shot quantum machine learning aims to
overcome the measurement problem by ensuring that a single execution of a quantum classifier is sufficient to obtain
a prediction with high probability. A classifier is defined as δ-single-shot if the expected probability that the label
predicted from infinite shots matches the output label for one shot is at least 1− δ:

Definition 1 (Single-shot probabilistic classifier (Bayesian)). For datapoints x distributed according to a distribution
p(x) supported on a data domain X , we say a probabilistic classifier f is δ-single shot if

E
x∼p(x)

{
P[f̂(x) = f(x)]

}
≥ 1− δ, (2)

where the probability is taken over the random distribution of datapoints and the inherent randomness of the classifier.

Here f(x) is the majority label assigned by the classifier, and f̂(x) is the random label output by the classifier run
only once. Notice that we are not worried with outputting the true labels of the data, but only with the consistency
of the classifier, regardless of its correctness. Nevertheless, this property depends on the specific learning problem
and the data distribution. In the full paper, we also have a definition that works without considering a distribution
on the data (which we might not know) and we study the interplay between these two definitions.

• Reduction to Multi-Hypothesis Testing To quantify the limits of the Bayesian single-shot property, we split
the parameter space according to the majority labels assigned by the classifier. We formally define the associated set
as X̃y′ := {x ∈ X | f(x) = y′}.

Theorem 2 (Bayesian error probability lower bound). Let f be a probabilistic classifier on a data domain X taking
discrete values in Y. For datapoints x distributed according to a distribution p(x), we define the average states for
the classes assigned by f as

p̃(y) :=

∫
X̃y

dp(x), ρ̃y :=
1

p̃(y)

∫
X̃y

dp(x) ρ(x). (3)

If the classifier f has the Bayesian single-shot property, the error probability δ has to fulfill

δ ≥ P ∗
e ({p̃yρ̃y}y∈Y). (4)

Therefore, the error probability δ is bounded by the optimal error of the corresponding multi-hypothesis testing
problem (and, therefore, by the trace distance between the average embedded states).

• Ultimate Limits of Single-shot Quantum Machine Learning The feasibility of achieving single-shot prop-
erties in quantum classifiers is fundamentally constrained by the distinguishability of the embedded quantum states.

▷ Noiseless circuits For noiseless data-reuploading circuits we can find a bound that relates the single-shot error
probability to the length of the circuit.

Theorem 3 (Lower bound on the single-shot error probability (Bayesian)). Let f̂(x) be a quantum classifier with the
task of classifying r groups of classical data for which we know its probability distribution. The single-shotness error
probability is bounded by the worst average distance between two data classes:

δ ≥ min
1≤i≤r

max
1≤j ̸=i≤r

min(pi, pj)

pi + pj

(
1−

L∆dijavg
2

)
, (5)

where

dijavg := (pi + pj)

∫
Xi

dp(xi)

pi

∫
Xj

dp(xj)

pj
∥xi − xj∥1 (6)

is the expected distance of two datapoints sampled according to the data distribution, conditioned on them being from
the classes i and j.

Specializing the above result to two classes and setting pi, pj = 1/2 and rearranging we find that the depth L of the
circuit required to achieve a low single-shot error probability is inversely proportional to the average distance between
classes in the input data space: L ≥ 2 1−2δ

∆davg
where ∆ is the maximum spectral spread of the generators used in the

circuit, and davg is the average distance between different classes.
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Figure 2. Comparison of the three different bounds where we
can identify the three regimes: linear, geometric and exponential
decay.

▷ Noisy Circuits In practical implementations,
quantum circuits are affected by noise, which impacts
their ability to produce easily distinguishable quantum
states. Considering an error model with local depo-
larizing noise, we find an upper bound on the trace
distance between noisy embedded states that decays
exponentially with the number of computational steps.
We also provide a third asymptotic bound that im-
proves for shallow circuits. Combining all three bounds
we have derived for the noisy case (Figure 2) gives us
an upper bound on the achievable distance between the
embedded average states per majority class predicted
by the quantum classifier and as such allows us to ana-
lyze the possibility of single-shot classification by noisy
quantum classifiers.

• Generically accurate single-shot models are
hard to learn Achieving single-shotness requires
that quantum states with the same predicted label are
sufficiently separated from those with different predicted labels. This separation ensures that the states cluster appro-
priately, facilitating accurate single-shot predictions. Theoretically, embedding all sufficiently separated inputs into
mutually orthogonal directions in Hilbert space can enable single-shot classification for any dataset labeling. This
could be achieved with numerous encoding gates interspersed with deep layers of random unitary gates. However,
we build on arguments presented in Ref. [2] to show that such an embedding often results in poor generalization
performance, essentially as unseen datapoints would be mapped into orthogonal complements, leading to classifiers
not outperforming random guessing on new data. This highlights a critical challenge in quantum learning models:
balancing expressivity and generalization. Highly expressive models that map inputs to orthogonal directions struggle
to generalize to new data.

•Challenges and Future Directions Achieving generic single-shot properties in quantum classifiers is challenging
due to the inherent trade-off between expressivity and generalization performance. Overly expressive models tend to
overfit the training data, resulting in poor generalization to unseen data. Future research should focus on developing
training procedures that enforce single-shot properties while maintaining good generalization. Additionally, exploring
single-shot quantum machine learning for regression tasks and other problem domains could provide further insights
and applications.

• Conclusion This study introduces and formalizes the concept of single-shot quantum machine learning, high-
lighting its potential to mitigate the measurement problem in quantum machine learning. By leveraging connections
to quantum multi-hypothesis testing, we derive fundamental limits on the depth of quantum circuits necessary for
single-shot classification. Our findings suggest that, while single-shot properties can be achieved under certain con-
ditions, practical implementations must carefully balance expressivity and generalization. Further research is needed
to develop robust single-shot quantum learning models and extend these concepts to broader applications.
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