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Abstract

This study proposes the use of conditional 
Reinforcement Learning to address the optimization 
challenges in the Variational Quantum Eigensolver (VQE). 
While VQE is recognized as a promising algorithm, it 
faces the issues to re-optimize and redesign the ansatz 
structure whenever a new Hamiltonian is introduced. 
This paper aims to overcome this problem by employing 
conditional-Reinforcement Learning (RL) techniques. The 
proposed approach seeks to automatically learn the 
optimal ansatz and optimization strategies for various 
Hamiltonians, significantly enhancing the applicability 
and efficiency of VQE.

Conditional Soft Actor Critic

Our goal is to construct circuits from MDP that 
maximizes the reward for a given condition when it enters 
the actor. Therefore, one of the inputs to both the policy 
and Q networks, namely the state, is replaced with state 
and condition. Moreover, the reward function varies not 
only based on the state and action but also depending on 
the condition.

i.e. 
𝜋 s → 𝜋 s, c

𝑄 s, a → 𝑄 s, a, c
 r s, a → r s, a, c

Algorithm Overview

Here is diagram illustrating the algorithm. Using 
Conditional Soft Actor-Critic (C-SAC), the agent is trained 
on the training conditions. After training, the test 
condition is provided as the condition input to the agent, 
enabling the actor to generate a circuit.

LiH training result (moving episode average 25)

Results (Testing)

For the molecule H3
+ and LiH molecules, gradient 

descent was applied to a circuit with an ansatz structure 
generated by a discrete actor, using rotation angles 
generated by a continuous actor as the initial parameters 
for optimization.
The results demonstrate that the number of steps 
required by our algorithm is significantly lower compared 
to other methods for new hamiltonian condition.

H3+ best error gap generated by agent + 
gradient descent

LiH best error gap generated by agent + 
gradient descent

H3+ average optimization step
(yellow : ADAPT-VQE, purple : random ansatz, 

blue : ours)

LiH average optimization step
(yellow : ADAPT-VQE, purple : random ansatz, 

blue : ours)

Discussion

In this study, we developed an algorithm 
optimized for reducing quantum resource 
requirements when faced with new 
Hamiltonians. 
First, we implemented reinforcement 
learning to generate quantum circuits via a 
Markov Decision Process (MDP). 
Second, we introduced conditional 
reinforcement learning, enabling the agent 
to adapt to new condition values and 
generate corresponding circuits effectively. 
Third, we employed the Soft Actor-Critic 
(SAC) algorithm in a conditional-
continuous-discrete reinforcement 
learning framework to ensure that the 
results vary smoothly with changes in 
conditions. 
Figures demonstrate the efficacy of our 
algorithm in requiring fewer quantum 
resources compared to traditional 
methods, optimization starting from 
random ansatz and random parameter 
initialization, and the ADAPT-VQE 
algorithm. 
However, it is important to note that our 
algorithm demands a substantial number 
of quantum measurements during training, 
and the resulting error gap was larger than 
that observed with the ADAPT-VQE 
approach with same number of gate. This 
discrepancy can be attributed to the 
nature of reinforcement learning, which 
assumes that the reward function without 
a gradient, making precise convergence 
more challenging. This limitation highlights 
an area for further improvement in the 
accuracy and efficiency of our 
reinforcement learning-based algorithm.

                         

                      

   

   

   

   

   

 
 
 
  

 
  

 
 
  

  
 
  

 
 
 
  

 
  

 
 
  

 
 

                            

                        

                         

   

   

   

   

   

   

   

   

   

 
 
 
  

 
  

 
 
  

  
 
 

        

           

          

                        

                         

      

      

      

      

      

 
 
 
  

 
  

 
 
  

  
 
 

     

           

          

                        

                         

 

   

   

   

   

 
 
  

 
  

 
  
 
 
  

  
 

    

                        

                         

 

   

   

   

   

    

    

    

 
 
  

 
  

 
  
 
 
  

  
 

    

Results (Training)

We applied our algorithm to two molecular structures: 
H3

+ (equilateral triangle) and LiH. 
The hamiltonians for these molecules used in the
algorithm, were obtained using the Jordan-Wigner
transformation and the STO-3G basis set with 2 active
electrons.
The bond length data utilized ranged from 1.5 to 5 atomic
units for H3

+ and 2.5 to 6 atomic units for LiH. 
Also, we constrained maximal number of quantum gate
as 10, 20 for H3

+, LiH molecule.

H3+ training graph (moving episode average 50)

                      

                      

   

   

   

   

   

   

 
 
 
  

 
  

 
 
  

  
 
  

 
 
 
  

 
  

 
 
  

 
 

                           

 

 

 

 

 

 

 

 

 

 

 

 

 
  

  
 
 
 

 
 

  
 
  

 
 
  

 
  

  
 
 
 

 
  

  
 
 
 

 
 

  
 
  

 
 
 

 
  

  
 
 
 

 
  

 
  

 
 
 

 
 

  
  

 
 
 

 
  

 
  

 
 
 

 
  

 
  

 
 
 

 
 

  
  

 
 
 

 
 

  
  

 
 
 

 
 

  
  

 
 
 

 
 

  
  

 
 
 

 
  

  
 
 
 

 
 

  
  

 
 
 

 
  

 
  

 
 
 

 
  

 
  

 
 
 

 
 

  
 
  

 
 
 

 
 

  
  

 
 
 

One of generated circuit with agent trained for 
LiH and condition at distance 3.7727 atomic 

unit
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