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Data re-uploading is a well established method in the realm of QuantumMachine Learning (QML).
In our work we realised a photonic version of such a single qubit classifier on a variety of datasets
of different complexity and dimensionality in an optical integrated circuit. This constitutes an
important first step to transfer the possible energy-efficiency gains from classical photonic chips to
QML.

Data re-uploading [1] is a well studied quantum machine learning technique. It offers the capabilities of a universal
approximator, under certain requirements, with just a single qubit and rotation operations [2, 3]. In the same fashion
as in classical Neural Networks the input data is reintroduced to the learning system multiple times. While this
can be easily achieved in a classical network by simply copying the input data, for a quantum variant, due to the
non-cloning theorem, one must introduce the data multiple times. Herewith the quantum algorithm is structured
in distinct layers. Each layer consist of an encoding unitary Uenc, where the input data is encoded, and a trainable
unitary Uϑ, with free tune-able parameters. Hence the overall operation of the circuit reads as follows:

|Ψout⟩ =
L∏

l=1

[Uenc(x⃗)U(θ⃗l)] |Ψin⟩ (1)

As shown is several publications such a structure act as a universal approximator[2–4]. In this scheme one makes use
of the non-linear operation, which ones obtains by direct encoding of the input data in a rotation gate.

The expressivity is simply dependent on the amount of sequential encoding and training unitaries. While this
approach is less suited for superconducting qubits, due to a very limited coherence time, this is extremely suitable
for photonic qubits. Furthermore, since we only require a single qubit for the data re-uploading QML algorithm,
we use a weak coherent laser-light in a two mode system to perform the machine learning tasks. In this picture we
can implement any unitary operation, up to a global phase in the computational basis, by a single Mach-Zehnder
interferometer (Figure 1), consisting of two 50/50-beamsplitters and an internal and external phase-shifter [5]. Note
that we can implement multiple layers through a single Mach-Zehnder interferomenter, since we can express the
product of unitaries as a single unitary.

In this work, we realised such a data re-uploading scheme in an integrated optical chip, enabling the possibil-
ity of transferring the energy efficiency gains of a classical optical chip to a quantum machine learning algorithm.
Furthermore, we used Linear Discreminant Analysis to find the linear seperation on the single dimensional bonded
outputspace as a classification.

FIG. 1: Integrated Mach-Zehnder Interferometer. Mach-Zehnder interferometer without an external phase
shifter. Hereby the output distribution depends in a non-linear way on the phase ϑ, constituting the inputs.
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FIG. 2: Datasets of different complexity and dimensionality used in the experimental realisation. (a)
Circles and (b) Moons are generated by the scikit-learn python library [6]. (c) Two possible Tetrominos, i.e. ”L”
and ”T”, and there negative mask in a 3 by 3 grid. (d) Two classes from the Overhead MNIST dataset [7], i.e.

”Car” and ”Ship”. The last data set was reduced using Principal Component Analysis to 20 features.

FIG. 3: Visualisation of a three layered single qubit classifier on the circles dataset. The top row shows
the action after x layer(s) on all of the output states on the Bloch sphere. The middle row denotes the operations

applied to our fixed input state. The last row, shows the encoded data set - orange and blue points in the
arrangement of two concentric circles with different radii - and the predicted label by the classifier via the

background colour.

In addition, the suggested approach, with all its resource-efficiency improvements, seem to be robust enough, that
the protocol leads to the same results for both noise-less simulation and a noise heavy experimental realisation.

Hereby, a wide variety of different datasets were investigated (Figure 2). The first two examined datasets are the two
dimensional Circles (Figure 2a) and Moons (Figure 2b) dataset. These two differ mainly by the required non-linearity
to solve them. A visualisation of this data re-uploading ansatz on the circles dataset is shown in Figure 3.

Since both of the two datasets can be solved with only a small number of layers, we increased the complexity of the
task, by evaluating higher dimensional data. In order to incorporate more than two features, which are implementable
on a single Mach-Zehnder-Interferometer, we utilised a sequential approach, i.e. splitting the data up in pairs and
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FIG. 4: Achieved accuracy vs. model dimension. The green curves plot the performance on the training data,
while the red curves visualise the performance on unseen test data. The dotted and solid lines represent the

theoretical/simulated and the performance on the optical integrated circuit respectively.

implement one pair after another in the single qubit rotations, always followed by a trainable gate operation. The
complete set of all unitaries for encoding the complete dataset and the following trainable gates form a single layer of
the data re-uploading quantum learning system [8].

In this way, larger 3x3 image classification of Tetrominos (Figure 2c), as well as the binary classification of satellite
images (Figure 2d) after a dimensionality reduction to 20 features, were performed.

In the first iteration the training procedure was performed, with the python libraries TensorFlow [9] and Strawberry
Fields [10, 11], to ensure good convergence, before running the prediction on real hardware. The resulting performance
for the first three datasets are depicted in Figure 4. For the last examined dataset, i.e. parts of the Overhead MNIST
dataset [7], we only optimised the scenario with four layers, which yielded a accuracy of 86.15% (train) and 85.14%
(test). In contrast a linear classifier on this task is only able to achieve 82.32% and 81.08% respectively.
In the following, in order to demonstrate the feasibility of this algorithm implemented solely in quantum hardware,

we first also performed some experiments without compressing the unitaries. Furthermore, since the biggest hurdle
for data re-uploading is the required training of the circuit, we successfully trained the model directly on chip, through
parameter shift [12, 13].
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