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Derivative calculations for quantum circuit outputs with respect to variable circuit parameters (input or
variational parameters) is essential to implement a breadth of quantum algorithms, especially in the field of
Quantum Machine Learning (QML). Notable examples include algorithms like Differentiable Quantum Circuit
(DQC) [1] and Quantum Extremal Learning (QEL) [2]. Analytical or automatic differentiation (AD) methods
are usually favored over numerical differentiation methods, e.g. based on finite differences, even in classical
machine learning due to their robustness against errors. Quantum computation exhibits fundamental shot
noise, therefore numerical differentiation is error prone and unfeasible on noisy intermediate-scale quantum
(NISQ) hardware with limited shot budget. On quantum hardware where qubit interactions can be turned off
(superconducting or ion-trapped), control parameters are rotation angles in single-qubit gates. In these settings,
parameter shift rule (PSR) [3, 4] has become the de facto method for calculating derivatives. It has also been
experimentally demonstrated to be more robust against noise [5].

Usual PSR is valid where parameters control gates that can be described by involutary and idempotent gener-
ators having spectrum consisting of values ±λ after removing possible duplicates. However, not all parametrized
quantum circuits can be represented by such generators. Notably, on neutral atom platforms such as Pasqal’s,
any non-trivial configuration for a parameterized quantum circuit exhibits a background Rydberg interaction
between atoms that cannot be turned off. In such cases, generators governing the dynamics of the quantum cir-
cuit are neither involutary nor idempotent, thus one has to rely on the generalized parameter shift rule (GPSR)
[6] to calculate derivatives.

According to [6], for a given parameter x, one can define a function f(x) as quantum expectation of a
Hermitian cost operator Ĉ

f (x) = ⟨ψ| Û†(x)ĈÛ(x) |ψ⟩ , (1)

where |ψ⟩ is some initial state and Û(x) = exp
(
− i

2xĜ
)

is a unitary evolution operator governed by the

Hermitian generator Ĝ. The derivative of f(x) is given by

df (x)
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=

S∑
s=1

∆sRs, (2)

where S is the number of unique non-zero spectral gaps {∆s}Ss=1 of generator Ĝ. Parameters Rs necessary for
derivative evaluation can be obtained by solving the following system of linear equations:
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(3)

Here, we denoted Fs = f(x + δs) − f(x − δs) as the difference between values of function f(x) with argument
shifted by ±δs.

The derivative expression in Eq. (2) is free from any approximations, hence mathematically exact, and
referred to as the GPSR. It provides a method to calculate the exact derivative with respect to parameters
represented by an arbitrary generator with a rich spectrum of eigenvalues. Moreover, it remains robust against
noise by tailoring the parameter shift values δs to minimize the variance of the derivative estimation. Since the

generator of a N -qubit quantum circuit has 2N eigenvalues and (at most) S = 2N (2N−1)
2 unique spectral gaps,

GPSR requires making measurements at 2S different values x± δs of the parameter to estimate the derivative
at any point x. For instance, derivative calculations of a N = 5 qubit circuit on neutral atom hardware cannot
be performed with ordinary PSR, and its generalized version has to applied. However, even with a 1000-shot
budget, merely a single estimate at each of the 2S = 992 shifted points x ± δs demanded by GPSR will be
possible, rendering it practically useless for the calculation of the derivative.

To solve this exponential scaling problem, we propose aGPSR (approximate GPSR) as a method of estimating
derivative of a function spawned by an arbitrary generator having a non-trivial spectrum of eigenvalues in a



limited shot budget setting. The foundation of this method is the observation that only a small fraction of
spectral gaps is sufficient to accurately estimate the value of derivative in Eq. (2). Expressions for aGPSR are
similar to Eqs. (2) and (3) with the only difference that the effective set of used spectral gaps is an arbitrary
collection {γk}Kk=1, instead of the actual gap spectrum {∆s}Ss=1 of generator Ĝ. This leads to a truncated
system in Eq. (3) containing only K ≪ S equations. The final expression of the derivative in this case, thus
reads
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where R({γk}Kk=1, {δk}Kk=1})k are values obtained by solving the truncated linear system in Eq. (3). δk and γk
are shifts and gap values that can be selected with different strategies for optimal performance. This allows
aGPSR to accurately estimate derivatives even in cases where the full generator spectrum is unknown, since
γk can be selected independently. One of the most obvious yet robust selection strategies is to draw distinct
γk values from k ∈ (0, · · · ,K]. We observed that as long as the majority of actual spectral gaps ∆s fall in the
range [0,K], the accuracy of derivative estimation is very high.

The second equality in Eq. (4) shows that aGPSR derivative estimates can be written in a form closely
resembling the original exact derivative expression in Eq. (2) but contains deviations QK from the original
spectral gap values ∆s. These deviations become zero in the limit of K = S, when aGPSR turns into full math-
ematically exact GPSR. Thus, accuracy of the approximation used in aGPSR can be assessed by investigating
the behavior of the deviation function QK

(
∆, {γk}Kk=1, {δk}Kk=1

)
when ∆ is varied, as depicted in Fig. 1. Here,

we can see that the larger K values, the smaller the deviation function for a wider range of spectral gaps ∆.
This confirms the observation that by increasing K, we can accurately estimate a larger portion of spectral gaps
of the generator, thus obtaining a more accurate estimate for the derivative. For instance, if the spectral gaps
of an arbitrary generator are mainly distributed in the range [0, 5], they are approximated with a relative error
QK

∆ ∼ 10−2 for K = 4. The derivative estimation will already be very accurate in this case.
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Figure 1: Spectral gap error function QK dependence on spectral gap value ∆ for different values of K.

Accuracy of aGPSR and its suitability for calculating derivatives on quantum systems exhibiting arbitrary
qubit interactions can be illustrated by considering the neutral-atom generator:

Ĝ =

N∑
i=1

σ̂x
i +

2

Ω

N∑
j<i

Jij n̂in̂j

 . (5)

Here, Ω is the drive amplitude of the laser pulse, Jij is the interaction strength between atoms i and j and



n̂i =
σ̂z
i +Îi
2 the number operator. The differentiation parameter in this case is x = Ωt. In Fig. 2 we can see the

derivative calculated for a 6-qubit system with 2× 3 qubit layout and parameters of generator Ĝ such that Ω is
significantly smaller than the characteristic interaction strength J . In this case, the dynamics of the system are
mainly determined by the always-on interaction between the qubits whose generator cannot be represented as
single-qubit operations. Ordinary PSR will definitely fail to accurately estimate the derivative in such system
as confirmed in Fig. 2.
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Figure 2: Comparison of derivatives df
dx calculated for different K values. The ratio of the drive amplitude with

the interaction strength is J
Ω ≫ 1.

Here, we can observe that PSR with a single gap to calculate the derivative is quite at variance with
respect to the exact result. On the other hand, it is evident that aGPSR method using at least K = 4 terms
already coincides perfectly with the exact derivative curve. To emphasize the considerable benefit of aGPSR
in computation requirements, we must note that full GPSR for such a 6-qubit system would require solving a
large linear system in Eq. (3) with S = 1952 equations instead of K = 4.
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