Dimension reduction in quantum sampling of stochastic processes
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Abstract. Quantum technologies offer a promising route to the efficient sampling and analysis of stochas-
tic processes, with potential applications across the sciences. Such quantum advantages rely on the prepa-
ration of a quantum sample state of the stochastic process, which requires a memory system to propagate
correlations between the past and future of the process. Here, we introduce a method of lossy quantum
dimension reduction that allows this memory to be compressed, not just beyond classical limits, but also
beyond current state-of-the-art quantum stochastic sampling approaches. We investigate the trade-off be-
tween the saving in memory resources from this compression, and the distortion it introduces. We show
that our approach can be highly effective in low distortion compression of both Markovian and strongly
non-Markovian processes alike. We further discuss the application of our results to quantum stochastic

modelling more broadly. For more details, please refer to arXiv:2404.10338.
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Introduction — Complex stochastic processes abound
across the sciences, from evolutionary biology and chem-
istry [I, 2, B, 4 [5], through geophysics and astro-
physics [6, [7], to financial markets [8, @ [0, I1], traffic
modelling [12], and natural language processing [13], [14].
Given their pivotal role in these fields, it is vital that
we can effectively simulate, analyse, and understand
stochastic processes. However, the number of possible
trajectories that such processes can explore generically
grows exponentially over time, limiting the horizon over
which we can feasibly study their behaviour. This makes
tools and techniques that mitigate this growth in com-
plexity of critical value.

Monte Carlo methods [15] [16] [I7] present such a tech-
nique. They use generative models to reduce computa-
tional resources by sampling from the process one trajec-
tory at a time, and then average over many such sampled
trajectories to estimate the expected values of proper-
ties of the process. The considerable successes of such
techniques notwithstanding, they still suffer from certain
drawbacks, such as the need for a (typically large) mem-
ory system to carry the information propagated in corre-
lations over time in the process.

Quantum information processing provides a further
route to efficient sampling, modelling, and analysis of
stochastic processes. Known quantum advantages in-
clude quadratic speed-ups in analysing properties such as
characteristic functions [I§], pricing options [19] 20, 21],
enhanced expressivity [22], and significant reductions in
the memory required by models [23] 24} 25]. These
advantages involve the preparation of quantum sample
states (‘g-samples’) that comprise of all possible strings
of outputs in (weighted) superposition [26]. Unlike other
quantum approaches to superposing classical data states
— such as qRAM [27] and variational state prepara-
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Figure 1: Recurrent quantum circuit for locally
generating quantum sample states (g-samples).
For each timestep a memory system is coupled with a
blank ancilla; following an interaction U the ancilla is
entangled with the previous timesteps of the g-sample
to yield the appropriate marginal g-sample state, whilst
the memory is passed forward to interact with the blank
ancilla for the subsequent timestep. This sequentially
generates the full g-sample state for any desired number
of timesteps.

tion [28] — the computational complexity of assembling
g-samples of stochastic process trajectories need not grow
exponentially; they can be constructed through a local,
recurrent circuit structure prescribed by the aforemen-
tioned quantum stochastic models [29] 30].

This recurrent circuit is illustrated in Fig. [1} It works
by propagating a memory system — which carries in-
formation about the correlations between the past and
future of the process — to interact with blank ancillae
and sequentially assemble the g-sample state timestep
by timestep. The circuit depth — and number of ancil-
lae qubits — thus scales only linearly with the number
of timesteps. However, as complex stochastic processes



often exhibit strong temporal correlations, the requisite
dimension of the memory system can grow quite large.

Specifically, we develop a systematic approach to lossy
quantum dimension reduction, whereby given a target q-
sample circuit we determine a new circuit of fixed mem-
ory dimension that assembles an approximation to the
original g-sample. Our approach is inspired by ma-
trix product state (MPS) truncation techniques [31] [32],
and exploits a correspondence between MPSs and g-
samples [33]. We show that this approach yields high-
fidelity approximations to g-samples corresponding to
both Markovian and highly non-Markovian (i.e., strong
temporal correlations) stochastic processes. We further
discuss the applications of this approach in stochastic
modelling [34], demonstrating that we can achieve signif-
icant compression beyond both current state-of-the-art
lossless quantum dimension reduction for quantum mod-
els, and lossy compression for classical models, whilst
retaining highly-accurate reconstruction of the output
statistics.

Processes and Models — For discrete-time, discrete-
event stochastic processes, at each timestep ¢ the corre-
sponding event x; € X is described by a random vari-
able Xy, drawn from a joint distribution P(..., X;, X +
1,...) [B5]. Sequences of events are typically correlated,
and we use the shorthand x4, to denote the contiguous
sequence T, i1, .- .,Ty—1. Here we consider stationary
(time-invariant) stochastic processes, such that ¢ € Z,
and all marginal distributions of any length are shift in-
variant (i.e., P(Xo.r) = P(Xpmm+1)Vm € Z, L € N.

Such stochastic processes can be generated sequen-
tially by a model, consisting of an encoding function
f: X — M that maps from sequences of past observa-
tions to a set of memory states M, and an update func-
tion A : M — X x M that acts on the current memory
state to (stochastically) produce the next output and up-
date the memory state accordingly. Amongst all classical
unifilar models that reproduce the exact statistics of the
process, the provably-memory-minimal (both in terms
of information stored and memory dimension) is the e-
machine, prescribed by an encoding function f. that sat-
isfies £.(F) = £.(F") & P(X[F) = P(X|F") [36]. The
corresponding memory states s € S are referred to as the
causal states of the process [37].

Curiously, it is possible to push the memory cost below
classical limits when using quantum encoding and up-
date functions, even though we are considering classical
stochastic processes [38], [39 29] [30 [40]. Such quantum
models use an encoding function that maps to quantum
states, and the update function is a quantum channel.
These memory states are defined implicitly by the update
function, which can be expressed in terms of a unitary
operator U:

Uloj)[0) = Y v/ Plalj)e’s=

UA(a:,j)> |z) (1)

where P(x|j) is the probability that the next symbol is z
given we are in causal state s;, A(x,j) is an update rule
that outputs the updated memory state label, and {¢,;}

are a set of real numbers.

However, there is still a cost that grows with the com-
plexity of the process — the size of the memory system.
In practical terms, this can be quantified by the number
of qubits required for the memory, i.e., D, := logy(d),
where d is the dimension of the memory. This dimen-
sion is upper-bounded by the number of memory states,
though can be lower when they exhibit linear dependen-
cies [30} 23]. Also of relevance is the amount of informa-
tion stored within the memory, i.e., the von Neumann
entropy of the memory states. That is, Cy = S(p),
where p 1= 37, P(j)|o;) (o] is the steady-state of the
memory system. Clearly, we must have that C; < Dg;
for many stochastic processes we even find that C; <«
D, [41), 42| [43], [44]. This indicates that much of the
memory capacity is under-utilised given the amount of
information that must be stored. In turn, this suggests
that it may be possible to drastically reduce the memory
dimension whilst discarding very little information, and
thus assemble high-fidelity approximations to g-samples
with drastically reduced memory size.

Distortion Measure — To quantify the accuracy of
our approximate g-samples, we will use the quantum fi-
delity divergence rate (QFDR) [32]. This extends the
notion of quantum fidelity (i.e., state overlap) from finite-
dimensional states to infinite length chains. The QFDR
Rp therefore captures the rate at which this distortion
reduces the fidelity on a per timestep basis. Specifically,

Re(1P),|P)) :=~ Jim_ log, F(IP2), P4, (2)

where F(|0),|¢)) = [{(¥|@)| is the quantum fidelity be-
tween states, | Pr) is shorthand for the L-length g-sample
|P(Xo.1)), and |P) the L — oo limit of this.

Theoretical Bounds — The direct form of trunca-
tion for MPSs is to reduce them to their canonical form,
keep the d largest Schmidt coefficients at each bond
(where d is the desired final bond size), discard the rest,
and then uniformly rescale the remaining Schmidt co-
efficients such that the resulting MPS is appropriately
normalised [45] [46] [47] [48]. For the case of g-samples,
described by iMPS, we can upper-bound the QFDR Rp
in terms of the magnitude of the discarded Schmidt co-
efficients.

Theorem 1 Consider a g¢-sample |P) for which the
iMPS representation has d Schmidt coefficients {\;} la-
belled in decreasing order. For any truncated dimension
d, there always exists a g-sample |P) that can be con-
structed sequentially with a memory of at most dimension
d that satisfies

S2(1—Zg)ln2+0<i> 3)

for any L € N, where €; := ZZ:&H A

Rr(|P),|P))

Moreover, by setting L ~ 1/2¢; we obtain that
Rp(|P),|P)) < O(e;). Thus, we see that the QFDR
grows only linearly with the sum of discarded Schmidt



coefficients. By choosing d such that e is sufficiently
small, we can therefore control the distortion between
the target g-sample and its reduced memory approxima-
tion.

However, this does not by itself carry any guarantees
that such a d is much smaller than the original memory
dimension d. In the following theorem and corollary we
establish a relationship between the information cost of
the g-sample, the truncated memory dimension, and the
size of the sum of discarded Schmidt coeflicients.

Theorem 2 Given an iMPS with d > 3 mnon-zero
Schmidt coefficients, and its approzimation by truncation
to the largest d > 3 Schmidt coefficients, the sum of the
truncated Schmidt coefficients € is bounded as follows

H(N) _ @)

0= logy(d — d) + log,(d)

GJS

S

where H(X) is the Shannon entropy of the Schmidt coef-
ficients.

By recasting this theorem in terms of g-samples and by
further loosening Eq. we obtain the following corol-
lary:

Corollary 1 Consider a g-sample |P) for which the
iMPS representation has d > 3 non-zero Schmidt coef-
ficients and can be constructed sequentially by a memory
with an information cost Cy. Consider also an approz-
imation to this g-sample |P> with truncated dimension
d > 3 formed by truncating the d — d smallest Schmidt
coefficients of |P). The sum of the truncated Schmidt
coefficients € satisfies

7 (5)

IA
Ly

where Dy = logy(d).

Further, by combining this with Theorem [T} we have that
for any g-sample | P) of memory dimension d > 3 and in-
formation cost Cy, there exists a g-sample |P) of memory
dimension d that approximates |P) satisfying

Rr(IP),|P)) <0 (g) , (6)

q

where D, = logy(d). This indicates that if C, < D,,
there is significant scope for truncating the memory di-
mension without introducing significant error, affirming
our earlier intuition.

Computational Approach — To carry out our quan-
tum dimension reduction for g-sample construction, we
use the wvariational truncation approach for iMPS, based
on tangent-space methods [49, B2, 50]. Given an injec-
tive IMPS {A*} of bond dimension d, this approach seeks
to find an injective iMPS {A*} of dimension d of maxi-
mum fidelity with the target iMPS. This is equivalent to
finding the iMPS representation of a q-sample |P) with
memory cost D, = log,(d) that minimises the QFDR
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Figure 2: Divergence rates for 1 (qu)bit g-samples
and models of the Dyson-Ising chain process.

with respect to a target g-sample |P) with memory cost
D, = logy(d). We then use the iMPS representation of
the approximating g-sample to prescribe a circuit that
can be used to construct it. We apply our algorithm to
an example known as the Dyson-Ising spin chain.
Consider the thermal state of Dyson-Ising Hamilto-
nian at temperature T, whose dynamics are described by
the (classical) Hamiltonian Hpr =}, J(j, k)ojox. The

probability of a given spin configuration o s given by
()

H.

P(?) = %e‘ T , where the normalisation Z is the par-
tition function. This can be viewed as a stochastic pro-
cess, where we sweep sequentially along the chain spin
by spin, and consider the distribution for the state of
the next spin given the previous spins seen [41]. It can
be shown that the corresponding conditional distribution
for a given site is a function of only the last L spins — it
is a Markov order L process. Thus, as L is increased the
non-Markovianity of the process increases.

As can be seen in Fig. (a), for high T our
reduced memory ¢-samples achieve QFDRs below
10~3qubits/timestep, even as L increases. Intriguingly,
for low T, the QFDR actually decreases with L, despite
the increasing non-Markovianity. While we lack a rig-
orous argument, we suggest that this could be because
the truncated g-sample circuits tend to display infinite
Markov order behaviour in their statistics, and so in cer-
tain circumstances the reduced memory g-samples may
more naturally fit to processes with infinite Markov or-
der.

Conclusion — Our approach to quantum dimension
reduction for quantum sampling and quantum stochas-
tic modelling may provide a route to leveraging quantum
approaches for more efficient feature extraction [51] [52],
a task of vital importance in a world that is becom-
ing ever-increasingly data-rich and data-intensive. We
have substantiated that quantum models can in effect do
more with less, requiring smaller memories to capture
expressivity not possible with larger classical memories.
Moreover, by reducing the quantum resources required
for such tasks, we bring them increasingly into reach of
quantum processors of the nearer future.
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