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Quantum software engineering, as an emergent branch of software engineering, focuses on adapting 
established software design and development principles to enhance the quality of systems designed for quantum 
computing. The quality of a system is determined by its adherence to various quality attributes defined by the 
software quality standard IEEE: ISO/IEC 25002:2024 [1], which includes functional suitability, reliability, 
performance efficiency, usability, security, compatibility, maintainability, and portability.  In this work, we present 
the findings from a systematic literature review (SLR) that investigates architectural patterns in current quantum 
AI systems. Architectural patterns, being general and reusable solutions to recurrent software architecture issues 
within a specific context [2, 3], are critical for optimizing these quality attributes. By identifying these patterns 
through evidence-based research, we aim to significantly broaden the knowledge base in software engineering.  

The research data were gathered from databases including IEEEXplore, Nature Portfolio, ACM Digital 
Library, Springer, and GoogleScholar. Our initial search returned 6,822 research articles. After applying specified 
selection criteria and filtering the sources based on quality requirements, we collected 133 papers, which were 
then used to synthesize the presented research findings.  We identifie four primary classes of architectural 
patterns in quantum AI systems, categorized by their role in the system architecture: the topology of the inference 
engine (quantum-classic split), the user-component interface, the model training process, and the execution 
environment.  

The first category of patterns addresses the challenge of leveraging the quantum advantage of quantum 
machine learning models while ensuring they are deployable on current quantum computers.  Contemporary 
Noisy Intermediate-Scale Quantum (NISQ) era hardware is limited by having fewer than a thousand qubits and 
short coherence times, which restrict the depth of quantum circuits. These limitations mean quantum components 
can only process small data volumes. To mitigate this, some systems use hybrid inference engines that combine 
quantum and classical computing elements. An example is the hybrid system depicted in the component model 
in Figure 1, where quantum inference is enhanced by classical neural networks. 
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Fig. 1 a) Component diagram of a hybrid inference engine and b) its simplified representation. 
 

The results of SLR reveals several quantum-classic split patterns illustrated in Fig. 2.  The most prevalent pattern, 
termed quantum neural networks (QNNs) and depicted in Figure 2b, is predominantly featured in theoretical 
research. These studies typically propose a new model and serve as proof of concept, where data is directly input 
into the encoder of the quantum circuit. In contrast, more practical research, which is generally aimed at real-
world applications, often utilizes what is known as the "quantum head" pattern, illustrated in Figure 2e. This 
approach involves processing high-dimensional data through classical, often pretrained, inference systems to 
distill essential features from raw data. These features are then used by a quantum parametrized circuit, which is 
trained to perform inference tasks based on these distilled features. 
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Fig. 2 Classic-quantum split architectural patterns: a) quantum head, b) QNN, c) quantum feature extraction, d) 
intermediate quantum layer, e) quantum head for large data, f) quanvolution, and d) quantum generative models. 
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