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Introduction

Quantum resources, due to their inherent probabilistic nature, can be used to efficiently draw
samples from probability distributions of high complexity [1]. This makes generative learning,
the machine learning paradigm aiming to capture the underlying distribution of data in order
to generate realistic samples, a natural pathway towards harnessing the potential of quantum
computers. Recent advances in quantum machine learning (QML) led to the adaptation of
several successful classical generative models. In this work, we concentrate on quantum circuit
Born machines (QCBMs) [2, 3]. This paradigmatic generative QML model naturally inherits
the Born rule and thus can be used to generate tunable and discrete probability distributions
that approximate a target distribution.

While their high expressivity makes general purpose QML models very powerful, they
also pose several challenges. Contrary to classical neural networks, variational quantum circuits
are much more affected by trainability issues, such as barren plateaus and poor local minima.
Furthermore, the no-free-lunch theorem also translates to QML, suggesting, that these problem-
agnostic models, like hardware-efficient Ansätze, have poor average performance. The reason
behind these barriers can be seen as the lack of sufficient inductive bias, i.e., assumptions about
the data that could be encoded into the learning algorithm. Consequently, a potential way of
dealing with them is by constructing problem-informed models, that can be trained more effi-
ciently for structured problems.

Probabilistic graphical models

Probabilistic graphical models (PGMs) provide a mathematical framework for representing
structure in generative learning problems defined over random variables [4], and as such, can
be exploited to construct problem-informed QML models. PGMs use a graph representation to
compactly encode a complex distribution of interacting random variables.

The two main classes of PGMs are Bayesian networks (BNs) and Markov networks (MNs)
each having their merits in different domains. BNs use directed acyclic graphs to represent the
conditional dependencies between random variables. As opposed to BNs, where the factors are
represented by edges, and can be interpreted as conditional probabilities, for MNs the factors of
the joint probability distribution are given by the cliques of an undirected graph and describe
the compatibilities between the corresponding random variables.

While there are several excellent works concerning the quantum circuit implementation
of BNs [5], MNs are not well-studied in the context of generative QML. In this work, we inves-
tigate the applicability of the framework provided by MNs to generative QML with classical data.

Markov networks for generative QML

We propose a problem-informed QCBM Ansatz for learning the joint probability distribution
of binary random variables, where the independence relations are efficiently represented by a
MN. We start by constructing a parametrized many-body Ising Hamiltonian, that is inspired
by the log-linear model of MNs, and consequently depends on the clique-structure of the MN of
interest. This Hamiltonian takes the form

H ′(β) =
∑
C∈C

⊗
v∈C

βC,v(I + Zv),
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Figure 1: (a) Markov network with two maximal cliques: Clique 1 = {A,B,C}, Clique 2 =
{C,D}. (b) Decomposition of the corresponding UZ(α) = e−iH(α) operator, where parametrized
gates represent k-local e−iαZ...Z operators.

where Zv is the Pauli-Z operator acting on qubit v, C refers to the set of cliques and β is the
parameter vector. Usually some of the MN cliques overlap in nonzero subsets, thus there will be
reoccurring terms. Since all terms commute, we can reparametrize the Hamiltonian such that
each term only appears once (and identities are excluded): H ′(β) → H(α). For example, for
the two cliques in the Markov network depicted in Fig. 1a, we would have

H(α) = α1ZAZBZC+α2ZAZB+α3ZBZC+α4ZAZC+α5ZCZD+α6ZA+α7ZB+α8ZC+α9ZD.

Having this parametrized Hamiltonian specific to the MN of interest, we can construct a
quantum circuit model similar to the quantum circuit Ising Born machine, introduced in [3].
However, instead of a generic 2-local Hamiltonian with all-to-all connectivity, we implement the
unitary generated by our higher-order Ising Hamiltonian H(α). The Ansatz starts in the |+⟩⊗n

state, then applies the unitary UZ(α) = e−iH(α) (see Fig. 1) and finally implements general
one-qubit gates and takes computational basis measurements. We call these problem-informed
QCBM models quantum circuit Markov random fields (QCMRFs).

Performance, trainability and potential quantum advantage

MNs provide a universal framework, that can represent any probability distribution. However,
some cases prove to be more useful, for our QCMRF model construction, than others. Therefore,
we restrict the class of MNs of interest through a series of numerical experiments and complexity
theoretic arguments.

First, we compare our model to the problem-agnostic QCIBM as formulated in [3], we
present simulation results based on MNs with grid-like topology, always considering the max-
imal clique factorization. We consider using both Kullback-Leibler (KL) divergence and the
squared maximum mean discrepancy (MMD) and calculate the total variational (TV) distance
analytically in each step for comparison. These results (shown in Fig. 2) demonstrate that as
we increase the connectivity of the graph and the sizes of its maximal cliques, the distribution
becomes harder to learn, as it is reflected in the performance of the problem-agnostic QCIBM.
However, the performance of our problem-specific QCMRF model is either unaffected by this
change, or it performs even better, as its complexity also increases with the underlying MN.
We also argue, that this enhancement is not a consequence of a higher number of trainable
parameters, but the ability of the QCMRF model to capture higher-order correlation between
the random variables. These minimal experiments are complemented by other more realistic
random graphs with specific community structures, where this enhancement is also present.
The numerical results highlight the potential of our framework to outperform problem-agnostic
models, especially when the random variables exhibit higher order correlations. Furthermore, we
validate the performance of our model, comparing it to the basis-enhanced Bayesian quantum
circuit (BBQCs) model introduced in [5].

Besides studying the performance, we also conduct a preliminary analysis of trainability
by studying the scaling of the MMD cost variance with the number of qubits. Our investigations
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Figure 2: QCMRF benchmark results against the problem-agnostic QCIBM model. As the
complexity of the problem increases with larger maximal cliques, the performance of QCIBM
decreases, while QCMRFs are either unaffected by this, or they even improve.

reveal, that for complete graphs with maximal clique factorization (that have an exponential
number of parameters) exhibit deterministic barren plateaus. On the other hand, for sparser
graphs, the scaling is not exponential anymore. This leads to the definition of efficient MN rep-
resentations, that have poly(n) degrees of freedom, and consequently the depth of the quantum
circuit is also polynomial.

Lastly, we discuss the possibility that the QCMRF model provides rigorous quantum
advantage relevant in the context of generative learning. We give formal definitions for two
different concepts of quantum advantage (Definitions 4 and 5 in the main paper): the first
concentrating on learning advantage, the other on efficiently sampling the learned distribution.
We present a possible line of arguments for the second setting, highlighting the potential of our
model to offer improvements over classical methods. This is based on Refs. [1, 6, 7].

The preprint of the work can be found at https://arxiv.org/abs/2405.14072.
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