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Abstract—Real-time finite element modeling (FEM) of bridges
assists modern structural health monitoring systems by providing
comprehensive insights into structural integrity. This capability is
essential for ensuring the safe operation of bridges and preventing
sudden catastrophic failures. However, FEM’s computational cost
and the need for real-time analysis pose significant challenges.
Additionally, the input data is a 7-dimensional vector, while
the output is a 1017-dimensional vector, making accurate and
efficient analysis particularly difficult. In this study, we propose
a novel hybrid quantum-classical Multi-layer Perceptron (QMLP)
pipeline leveraging Symmetric Positive Definite (SPD) matrices
and Riemannian manifolds for effective data representation. To
maintain the integrity of the qubit structure, we utilize SPD
matrices, ensuring data representation is well-aligned with the
quantum computational framework. Additionally, the method
leverages polynomial feature expansion to capture nonlinear
relationships within the data. The proposed pipeline combines
classical fully connected neural network layers with quantum
circuit layers to enhance model performance and efficiency. Our
experiments focused on various configurations of such hybrid
models to identify the optimal structure for accurate and efficient
real-time analysis. The best-performing model achieved a Mean
Squared Error (MSE) of 0.00031, significantly outperforming
traditional methods.

I. INTRODUCTION

Real-time analysis and monitoring of bridge structures
are essential for ensuring their safety and longevity. While
traditional Finite Element Modeling (FEM) provides detailed
insights into structural integrity, it comes with high com-
putational costs. This study addresses these challenges by
proposing a hybrid quantum-classical approach to enhance the
efficiency and accuracy of FEM for bridges.

To maintain the integrity of the qubit structure, we utilize
Symmetric Positive Definite (SPD) matrices, which belong
to the Riemannian manifold geometrical space, similar to
quantum states. This method ensures that data representation
is well-aligned with the quantum computational framework,
preserving essential properties for effective quantum process-
ing. Additionally, the method leverages polynomial feature
expansion to enhance the model’s capacity to capture nonlinear
relationships within the data.

Quantum machine learning (QML) combines the compu-
tational speed of quantum computing with the robustness of
classical machine learning, presenting promising solutions for
real-time structural health monitoring (SHM).

One of the significant challenges in this task is the disparity
between the input and output dimensions; the input is a 7-
dimensional vector, while the output is a 1017-dimensional
vector. This high-dimensional mapping is essential for ac-
curately representing the structural health data and ensuring
precise analysis.

II. LITERATURE REVIEW

Quantum computing has revolutionized various domains by
leveraging quantum mechanics’ principles to solve complex
problems more efficiently than classical computing. Schuld et
al. (2021) introduced the fundamentals of QML, emphasiz-
ing its potential to outperform classical methods in specific
applications [1]. Biamonte et al. (2018) detailed quantum
algorithms’ theoretical framework, demonstrating significant
improvements in machine learning tasks through quantum
computing [2].

In structural engineering, Beck and Katafygiotis (1998)
discussed the challenges of updating models and uncertainties,
a critical aspect of SHM [4]. Nuti and Briseghella (2020)
explored FEM of reinforced concrete bridge piers, highlighting
the need for efficient computational methods in structural anal-
ysis [5]. Nguyen et al. (2022) reviewed advancements in FEM
and model updating for cable-stayed bridges, underscoring the
importance of real-time analysis [6].

Quantum-enhanced feature spaces, as explored by Havlı́ček
et al. (2020), show how quantum computing can improve su-
pervised learning’s efficiency and accuracy, making it relevant
to SHM [3]. These studies collectively underscore the potential
of hybrid quantum-classical models in improving structural
analysis and monitoring.

III. MATHEMATICAL BACKGROUND

A. Symmetric Positive Definite (SPD) Matrices

An SPD matrix is a symmetric matrix with all positive
eigenvalues. SPD matrices are widely used in various fields
such as signal processing, computer vision, and machine
learning due to their desirable properties. For a matrix A to
be SPD, it must satisfy:

A = AT and xTAx > 0 ∀x ̸= 0



In our context, SPD matrices are generated from input data
vectors to ensure positive definiteness and facilitate quantum
state preparation.

B. Riemannian Manifold

The space of SPD matrices forms a Riemannian manifold,
a geometric object where each point has a neighborhood that
resembles Euclidean space. The Riemannian manifold of SPD
matrices allows us to exploit the geometry for more robust
data representation and processing.

IV. METHOD

To stay respectful to the underlying structure of qubits, we
use SPD matrices which belong to the Riemannian manifold
geometrical space, similar to quantum states. This approach
(Fig.1) ensures that the data representation aligns well with
the quantum computational framework, preserving the es-
sential properties required for effective quantum processing.
Additionally, this method benefits from polynomial feature
expansion, enhancing the model’s ability to capture nonlinear
relationships within the data.

A. Step 1: Data Preparation and Polynomial Feature Expan-
sion

Given an input data vector x ∈ R7, we first perform a
polynomial feature expansion to include nonlinear combina-
tions of the features. Specifically, we generate second-degree
polynomial features, including interaction terms. This results
in an expanded feature vector z.

B. Step 2: SPD Matrix Generation

Next, we generate an SPD matrix by constructing a covari-
ance matrix from the expanded feature vector:

Z = zzT

To ensure the matrix is strictly positive definite, we add a small
multiple of the identity matrix:

Z = zzT + ϵI

where ϵ is a small positive value.

C. Step 3: Eigenvector Decomposition and Projection

We perform eigenvector decomposition on the SPD matrix
to obtain the eigenvalues and eigenvectors:

Z = VΛVT

where V contains the eigenvectors and Λ is a diagonal matrix
of eigenvalues. We select the top k eigenvectors corresponding
to the largest eigenvalues to project the data into a lower-
dimensional space suitable for quantum processing:

xproj = VT
k z

where Vk consists of the k eigenvectors associated with the
largest eigenvalues.

D. Step 4: Normalization for Quantum State Preparation

The projected data vector is then normalized using the am-
plitude encoding method employed in PennyLane for quantum
state preparation:

xnorm =
xproj

∥xproj∥
This normalization ensures that the vector has unit norm,
which is required for valid quantum states.

E. Step 5: Quantum Processing

The normalized vector xnorm is used as input to the quantum
circuit. Quantum state preparation maps this vector onto a
quantum state in Hilbert space, allowing quantum processing
through a series of quantum gates.

By integrating these steps, we leverage the strengths of both
classical and quantum computing to develop a powerful hybrid
model for structural health monitoring.

F. Model Architectures

We compared three model configurations:
• Classical-Quantum Hybrid Model: Starting with three

classical fully connected layers, followed by three quan-
tum circuit layers, and ending with one final classical
layer.

• Quantum-Classical Hybrid Model: Starting with three
quantum circuit layers, followed by five classical fully
connected layers.

• SPD-Enhanced Quantum-Classical Model: Utilizing
SPD matrix generation, polynomial feature expansion,
and eigenvector decomposition to prepare the data, fol-
lowed by three quantum circuit layers and five classical
fully connected layers.

V. RESULTS AND DISCUSSION

Our experiments tested various configurations of the hybrid
QMLP model to identify the optimal structure for accurate
and efficient real-time analysis of FEM for bridges. Table I
summarizes the performance of different models.

Model MSE R² Score
Classical-Quantum Hybrid 0.00096 0.96143
Quantum-Classical Hybrid 0.00047 0.98445

SPD-Enhanced Hybrid 0.00031 0.98765
TABLE I

PERFORMANCE COMPARISON OF DIFFERENT MODELS

The SPD-Enhanced Hybrid model achieved the best per-
formance, with an MSE of 0.00031 a. This configuration
outperformed both traditional MLP models and other hybrid
configurations, demonstrating the effectiveness of combining
classical and quantum computing techniques with SPD matrix
generation and polynomial feature expansion.

Detailed Analysis of Results 1. Classical-Quantum Hybrid
Model: This model starts with classical layers, which helps
in initial feature extraction. The quantum layers then enhance
these features by exploring higher-dimensional quantum fea-
ture spaces. However, the limited classical preprocessing might



Fig. 1. Illustration of the quantum circuit used in the hybrid model. The circuit consists of multiple layers of Rx, Ry , and Rz gates interspersed with CNOT
gates for entanglement. This structure is designed to process the normalized vector inputs effectively by leveraging the quantum computational framework.

Algorithm 1 Quantum Circuit

Require: normalized vector inputs, weights for
three layers: weights1, weights2, weights3

Ensure: expectation values of Pauli-Z measure-
ments

1: Apply AngleEmbedding with inputs on all
qubits

2: Apply StronglyEntanglingLayers with
weights1 on all qubits

3: Apply StronglyEntanglingLayers with
weights2 on all qubits

4: Apply StronglyEntanglingLayers with
weights3 on all qubits

5: for each qubit i do
6: measure the expectation value of Pauli-Z
7: end forreturn list of expectation values for

all qubits

Fig. 2. Pseudocode for the Quantum Circuit

not fully exploit the potential of quantum computation, leading
to slightly higher MSE compared to other models.

2. Quantum-Classical Hybrid Model: This configuration
begins with quantum layers, allowing early quantum feature
extraction and transformation. The subsequent classical layers
then process these quantum-enhanced features. This model
benefits from initial quantum processing, but the lack of
sophisticated classical feature engineering prior to quantum
layers might limit its performance.

3. SPD-Enhanced Hybrid Model: By generating SPD ma-
trices and performing polynomial feature expansion, this
model ensures robust feature representation. The eigenvec-
tor decomposition step selects the most significant features,
which are then normalized for quantum state preparation.
The combination of initial classical preprocessing, quantum

feature transformation, and final classical refinement results
in superior performance.

VI. CONCLUSION

his study demonstrates the potential of hybrid quantum-
classical models for real-time analysis of finite element mod-
eling in bridges. By leveraging Symmetric Positive Definite
(SPD) matrices, which belong to the Riemannian manifold
geometrical space akin to quantum states, we ensure that the
data representation aligns well with the quantum computa-
tional framework, preserving essential properties for effec-
tive quantum processing. Additionally, the use of polynomial
feature expansion enhances the model’s ability to capture
nonlinear relationships within the data. The significant chal-
lenge of mapping a 7-dimensional input vector to a 1017-
dimensional output vector underscores the complexity of this
task. However, our proposed method achieved a Mean Squared
Error (MSE) of 0.00031, significantly outperforming tradi-
tional methods and demonstrating the efficacy of the hybrid
quantum-classical approach in structural health monitoring.
Future work will focus on adopting more advanced hybrid
neural network models and exploring their application to
structural health monitoring systems.

REFERENCES

[1] Schuld, M., Sinayskiy, I., & Petruccione, F. (2021). An introduction to
quantum machine learning. Contemporary Physics, 62(2), 172-185.

[2] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd,
S. (2018). Quantum machine learning. Nature, 549(7671), 195-202.
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