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Abstract—Understanding the molecular level mechanisms un-
derpinning Alzheimer’s Disease (AD) by studying the crucial
genes associated with the disease, however, remains a challenge.
Our proposed Quantum regression Network (Alz-QNet) intro-
duces a pioneering approach that merges Quantum Machine
Learning (QML) techniques with insights from Gene Regulatory
Networks (GRN) to unravel the gene interactions involved in AD
pathology, particularly within the Entorhinal Cortex (EC) where
early pathological changes occur. Using a quantum regression
network framework, we explore the interactions between key
genes such as Amyloid Beta Precursor Protein (APP ), Sterol
regulatory element binding transcription factor 14 (FGF14), Yin
Yang 1 (Y Y 1), and Phospholipase D Family Member 3 (PLD3)
within the EC micro-environment of AD patients, studying on
genetic samples from the GSE138852 database, all of which
have are believed to have a crucial role in AD progression. Our
investigation uncovers intricate gene-gene interactions, shedding
light on the potential regulatory mechanisms that underlie the
pathogenesis of AD, which help us to find potential gene inhibitors
or regulators for theranostics.

Index Terms—Quantum Machine Learning, Computational
Biology, Alzheimer’s Disease, Gene Regulatory Networks

I. INTRODUCTION

Alzheimer’s disease (AD) presents a formidable challenge
in healthcare, characterized by progressive cognitive decline
and neurodegeneration [1]. The accumulation of peptides
of Amyloid Beta (Aβ) from APP is a crucial factor in
AD pathology [2]. Despite extensive research efforts over
decades, the intricate mechanisms underlying AD remain
elusive, impeding the development of effective therapeutic
interventions [3]. The amyloid cascade hypothesis, attributing
neurotoxicity and neuronal loss to the accumulation of Aβ
peptides, has been a prominent theory but has encountered lim-
itations in translating it into successful treatments [4]. Clinical
trials targeting Aβ accumulation have produced disappointing
results, underscoring the multi-factorial nature of AD patho-
genesis influenced by factors such as Reactive Oxygen Species
(ROS) and ferroptosis [5]. Mounting evidence suggests that
Aβ deposition may be a downstream consequence rather
than the primary driver of neurodegeneration, necessitating
a reevaluation of therapeutic strategies and a deeper under-
standing of the molecular underpinnings of AD. Traditional
hypotheses, including the amyloid cascade hypothesis, have
failed to elucidate the complexity of the disease [6].
Quantum computing harnesses the principles of quantum me-
chanics to perform computations beyond the capabilities of

classical computers. Unlike classical bits, which can only exist
in a state of either 0 or 1, quantum bits or qubits can exist in
superpositions of these states, enabling exponentially greater
computational capacity and effective computations. This ex-
ponential scaling opens avenues for solving computationally
intractable problems in genomics [7]. For instance, the human
genome is given by 3 billion base pairs, which can be repre-
sented by 1010 classical bits, which are equivalent to 34 qubits
(2n possible states for each). Building upon the foundations
of QML seeks to leverage quantum algorithms and hardware
to enhance traditional machine learning techniques [8]. QML
offers the promise of accelerated learning and improved per-
formance on large datasets by exploiting quantum parallelism
and entanglement. Moreover, QML can potentially address
challenges such as feature selection, dimensionality reduction,
and pattern recognition, thereby extending the applicability
of machine learning to complex scientific domains [7], [8].
However, the main problem lies in the computational expense
and complexity of quantum circuits, considering the costs of
gates like controlled rotation, which are extensively used in
quantum machine learning (regression) circuits, which do not
entirely make quantum computing an economically feasible
option for data science in the short term. The traditional
method of quantum GRN [9] has the slight disadvantage of
being computationally very expensive to implement, as the
quantum circuit with n qubits requires n(n − 1) controlled
rotation gates and n rotation gates.
Recognizing these limitations, our Alz-QNet model harnesses
the computational power of QML to explore high-dimensional
genomic data to unveil intricate gene-gene interactions that
contribute to the pathogenesis of AD [10]. In the midst of
the intricate molecular mechanisms and unresolved queries in
AD research, the integration of QML and GRN analysis holds
promise for unraveling the complexities of AD pathogenesis.

II. QUANTUM REGRESSION NETWORK ARCHITECTURE

Our proposed Alz-QNet model studies the 8 genes specif-
ically for Alzheimer’s by significantly reducing the cost of
the C − RY gates by reducing their number by half through
a bypass mechanism to study GRNs with less computa-
tional complexity. In our study, we utilized single-nucleus
RNA sequencing (snRNA-seq) data from the entorhinal cortex
of Alzheimer’s disease (AD) patients to explore this neu-
rodegenerative disorder’s underlying genetic and molecular



Fig. 1: A quantum regression network to study Alzheimer’s
gene interactions.

mechanisms-GSE138852 [11]. The entorhinal cortex is a
critical region for memory and navigation, and it is one of
the primary areas affected in AD, making it an ideal target
for investigating early pathological changes. Inspired by the
Quantum Gene Regulatory Networks (QGRN) [9], in our
proposed Alz-QNet, as shown in Fig. 1, we leverage the
computational speed-up quantum computing offers to draw
gene regulatory relationships considering all the factors. In our
proposed parameterized quantum circuit, each qubit represents
a gene and initializes to phase 0. The proposed Alz-QNet is
divided into two sections: the encoder and regulation layers.
The encoder layer translates the snRNA-seq data into a
superposition state, and the regulation layers entangle qubits
to model gene-gene interactions in the quantum framework.
Through these layers, we construct an 8∗8 matrix, with the
unknown values of θx,y in the c−RY gates used to entangle
2 qubits, where x is the control qubit/gene and y is the target
qubit/gene. The optimized values of each θ in the matrix
correspond to the strength of gene interaction, which helps
us visually represent the same graphically. We use traditional
Laplace smoothing and the gradient descent algorithm for the
optimization procedure to minimize a loss function based on
Kullback-Leibler (KL) divergence.
In the proposed Alz-QNet, θk,k as the parameter for the RY

gate on the kth qubit in the Lenc layer, and θk,p for the c-RY , n
gate with the kth qubit as control and the pth qubit as target in
the Lk layer of an n-qubit system. For our case where n = 8,
the layers are defined as follows:

Lenc = RY (θ7,7)⊗RY (θ6,6)⊗· · ·⊗RY (θ1,1)⊗RY (θ0,0) , (1)

and

Lk =

7∏
i=0,i̸=k

c−RY , n(θk,i) = c−RY , n(θk,7)

⊗ · · · ⊗ c−RY , n(θk,1)⊗ c−RY , n(θk,0)

(2)

In our Alz-QNet circuit, we reduce the number of c−RY gates
to half compared to the traditional quantum gene regulatory
network by only optimizing the upper triangular matrix of θx,y
as we noted that the value of θa,b = θb,a, hence proving the
fact that only a single controlled rotation gate between 2 qubits
is sufficient to measure the interaction, provided we manually
equate θa,b = θb,a to construct the entire matrix:

θ =


θ0,0 θ0,1 · · · θ0,7
θ1,0 θ1,1 · · · θ1,7

...
...

. . .
...

θ7,0 θ7,1 · · · θ7,7

 ,

III. SIMULATION RESULTS

A nodal graph is generated on Quantum simulations using
Qiskit along with the observed vs. output frequency dis-
tributions graph and the observed vs. simulated frequency
distributions graph, as shown in Fig. 2, which resembles the
Gene Regulatory Networks (GRN) [12].

1.058265 0.044794 0.050884 0.123109 −0.054711 0.044286 −0.000519 0.025685
0.044794 1.044976 0.174487 −0.022467 −0.025248 0.002224 −0.047362 −0.078536
0.050884 0.174487 0.773622 −0.050870 −0.105563 −0.066458 −0.153903 0.074156
0.123109 −0.022467 −0.050870 0.562070 −0.058445 −0.060104 −0.168851 −0.019798
−0.054711 −0.025248 −0.105563 −0.058445 0.540032 −0.112907 0.034236 −0.029027
0.044286 0.002224 −0.066458 −0.060104 −0.112907 0.524879 −0.033177 −0.011903
−0.000519 −0.047362 −0.153903 −0.168851 0.034236 −0.033177 0.485128 −0.019015
0.025685 −0.078536 0.074156 −0.019798 −0.029027 −0.011903 −0.019015 0.138786


(3)

The above matrix shows the values of θx,y , where each
row and column corresponds to a different gene. The upper
triangular matrix in black is the optimized values of theta
obtained, and the lower triangular matrix was constructed from
the equated values from θa,b = θb,a.
Apart from the gene interactions that affect prominent genes
like APP and AKT3, which have direct correlations, our
findings extend and support the detailed epigenetic and tran-
scriptomic insights [1], particularly through the interactions
involving Y Y 1 and PLD3.

A. YY1 and PLD3 Interaction

Y Y 1 (Yin Yang 1) is a transcription factor with dual gene
activation and repression roles. It influences gene expression
epigenetically by recruiting proteins that modify chromatin
structure. Our results show a negative interaction between
Y Y 1 and PLD3 (-0.112907), suggesting Y Y 1’s repressive
role on PLD3. This aligns with the known function of Y Y 1
in gene repression and epigenetic regulation.

B. Role of PLD3 in Alzheimer’s Disease

PLD3 (Phospholipase D Family Member 3) is involved
in the processing of APP and the regulation of amyloid-
beta levels, which are critical in Alzheimer’s disease (AD)
pathology. Our study reveals complex interactions between
PLD3 and other genes, such as APP and SREBF2. These
interactions suggest that the regulatory network of PLD3 is
influenced by both transcriptional and epigenetic mechanisms,
supporting the emphasis of the neurobiology literature on the
importance of epigenetic modifications in brain development
and disease.
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Fig. 2: (a) The observed vs output frequency distributions
graph, (b) The observed vs simulated frequency distributions
graph, and (c) The final nodal graph, where each node corre-
sponds to the specific gene and the edges determine the gene
regulatory interactions. Green edges represent upregulation,
and red edges represent downregulation. The weight of the
edges determines the strength of the interaction between genes.

IV. CONCLUSION

Integrating transcriptomic and epigenetic data, our Alz-
QNet offers insights into how regulatory mechanisms at the
genetic and epigenetic levels contribute to AD. This sup-
ports the study conducted by Grubmanet al. [1] with an
emphasis on considering transcriptional and epigenetic fac-
tors in understanding brain function and disease, highlighting
the importance of integrating multiple layers of biological
data to understand the molecular underpinnings of diseases

like Alzheimer’s. This interdisciplinary methodology offers
valuable insight into the molecular foundations of AD and
underscores the promising role of QML research in elucidating
complex biological phenomena.

V. DATA AVAILABILITY

The Alzheimer’s Dataset used for our model can
be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE138852

VI. CODE AVAILABILITY & DESCRIPTION

The code required using IBM Qiskit, PyTorch, NumPy, and
MatPlotLib for the graph. The code of the final .csv file used
as the dataset for the experiment can be found at https://github.
com/NeeravSreekumar/AD_Quantum.
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