Are Quantum Convolutional Neural Networks Actually Useful? Likely not!
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Framework: Quantum Convolutional Neural Networks (QCNN) [1] have seen widespread use in Quantum
Machine Learning (QML) as they posses desirable features such as being implementable in logarithmic depth
and not exhibiting barren plateaus [2]. In particular, these models have shown success for classifying quantum
phases of matter [3—7|, and classical data embedded in quantum states [5, 8, 9]. While some works have
attempted to understand what these models can learn for a given problem [10], they do not address the
elephant in the room: Should we even use a QCNN at all? In this work we present theoretical and numerical
evidence which allows us to argue that:

e Randomly initialized QCNNs prevent barren plateaus by only being able to “see” their input states locally.
Mathematically, this means that the Heisenberg evolved local measurement operator only has support on
low-bodied Paulis. As such, they can only capture local information from the input states, and therefore
their action during the first steps of training is effectively restricted to a classically simulable polynomial
subspace.

e While one could argue that as the training progresses the QCNN action might drift to a non-classically
simulable region, we find that for most tasks where QCNNs have shown heuristic success, they do so by
staying in the polynomial subspace. That is, during the beginning, middle, and final steps of training
the QCNN only sees the input state locally. As an example, we present in this abstract the task of
classifying trivial states from topologically protected states in a bond-alternating Heisenberg model and
a Haldane chain, benchmarks that have been widely used to showcase QCNNSs. Yet, one can readily see
that a trivial state and a topologically protected state look different locally (almost by definition), and
therefore there exist local measurements which tell the states apart.

e The previous point then raises the concerning issue that most QCNN studies in the literature consider
classification problems which can be fully solved with access to local information (i.e., they are fairly
trivial and can also be tackled classically given local measurements from the input states). As such, we
propose an adversarial supervised classification dataset where we test if a QCNN can classify between two
topologically protected states. Importantly, all the states in the dataset now look maximally mixed when
seen locally, so the QCNN must leave the classically simulable region to solve the task. Unfortunately,
we find that in this case the QCNN over-fits the data and is unable to classify.

e Taken together, our results indicate that: (i) QCNNs appear to work only in tasks for which there exists
classical algorithms that can also solve the problem when given access to data coming from a quantum
computer, and (ii) when presented with a non-trivial task, QCNNs will be unable to solve it.

Importantly, we highlight that our work should not be understood as definitively proving that QCNNs are
not useful. We see our results as only presenting sobering evidence regarding their performance in challenging
datasets, and shedding serious doubts on their general usefulness. Moreover our work further strengthens the
connection between absence of barren plateaus and classical simulability.

QCNN simulability: Consider the following question: Why do QCNNs not have barren plateaus when
randomly initialized? To understand its answer, let us begin by recalling that a QCNN is composed of alternat-
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Figure 1: Classification accuracy for the simulation of a QCNN using LOWESA restricted to polynomial subspace operators
and performing classical shadows on the input states. We note that the results shown here correspond to Bond-alternating model
(left) and Haldane chain (right) with n = 100 and n = 30 qubits, respectively, for a set of 100 samples.

ing layers of convolutional and pooling layers. During a convolutional layer two-qubit gates act on neighboring
qubits in a brick-like fashion, while in a pooling layer half of the qubits are traced out. At the end of the QCNN,
one measures the expectation value of some local observable. Let U(0) denote the unitary that implements a
QCNN and O the operator that we measure. Then, our first result is as follows:

Result 1 (Informal). Consider the adjoint action of the QCNN over the measurement, then Eg[UT(8)OU (0)] ~
>_; ¢jPj, where Pj is a Pauli of bodyness |Pj| (i.e., acting non-trivially on |P;| qubits) and where c; € O(1/blF3l
(for some b > 1) are coefficients that decrease exponentially with the bodyness of the Pauli.

Result 1 shows that randomly initialized QCNNs essentially only have support on local operators, i.e., high-
bodyness operators have exponentially small contributions and hence do not really see the initial state during
the beginning of the training. Clearly, this realization on its own does not say much as the optimal classifying
measurement UT(6*)OU (0*) (where 8* denotes the optimal set of parameters) could be a global operator, as
is expected in most quantum phases of matter classification tasks [11]. However, by revisiting several results
in the literature, we argue, and numerically support, that the following result holds.

Result 2 (Informal). For most classification tasks in the literature there exists sets of optimal parameters 6*
such that UT(O*)OU(B*) has support on local observables, and the model achieves large classification accuracy.

The key implication of Result 2 is that the QCNN should be classically simulable once we have a classical
representation of the quantum data states in the subspace of local operators. Importantly, some form of
tomographic procedure (e.g. collecting classical shadows [12-14]) is needed to get this data. This experiment
could be performed on a quantum computer but could also potentially be performed on a simpler (e.g. non-
universal, analogue) quantum simulator. These measurements are used to approximate the action of the QCNN
on its initial states. More formally, we argue that for tasks where QCNNs work, then the algorithms is simulable
in CSIMqg [15]. (A problem C is in CSIMqg, i.e., is ‘quantum-enhanced classical simulation’, if a polynomial-
time classical algorithm, which can utilize data obtained from quantum devices in an initial data acquisition
phase (also in polynomial time), can compute every instance in C.)

Numerical results: To showcase our claims, we classically simulate the action of a QCNN via tensor
networks and the LOWESA algorithm [16] for the task of classifying between the 2 phases of the bond-
alternating XXX Heisenberg model [17] and the 2 phases of the Haldane chain [18]. We recall that the ground



states of Hxxx and Hp are characterized by a trivial phase and a topologically protected phase. We consider
a model of 100 qubits for Hxxx and 30 qubits for Hy, and employ a dataset of 100 samples, with equal
distribution of both ground state species. To illustrate that the action of the QCNN needs not leave the space
of local observables to accurately solve the task, we perform classical Pauli shadows on the data states, and we
bias the action of the QCNN so that it can only explore the polynomially-sized operators subspace.

In Fig 1 we show the test accuracy as a function of the 2 parameters defining the computational cost of
the data acquisition: number of training points and number of shadows. First, one can see that the accuracy
increases as the number of shadows increases. Then, one also observes the slight dependence of the accuracy on
the number of training points, proving no overhead in the number of realizations of the quantum circuit using
shadow tomography. This trend reflects the expected locality in the classification task involving one trivial
phase. The simulated QCNN is able to classify the quantum samples by only making use of local information.
The number of shadows needed is comparable to the number of shots employed during each optimization
step in standard training processes, but realized only once in the data acquisition stage. That this means that
one can classically solve the task given the shadow tomography with much less calls to the quantum computer.

Next, we consider a binary classification task where
the states is obtained by perturbing the degenerate
ground states of the toric code and double semion real- 0o
ized on a torous; two topological states of matter with
non-local nature of the order parameter between phases.
Here we simulate a randomly initialized QCNN acting
on the full state as input (i.e., no tomographic proce-
dure, as we want to study the QCNN as it would be im-
plemented on a quantum device). As we show in Fig 2,
the QCNN over-fits the input states independently of
the number of points and is not able to perform any
training at all, evidencing the proof that a randomly ini-
tialized QCNN only "sees" a polynomial size operator
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subspace which does not include the global order param-
eter that achieves the correct classification. Therefore,
for non-trivial tasks, which could potentially stand be-
yond classical numerical tools, QCNN seems incapable

Figure 2: We show the accuracy of a QCNN for the clas-
sification of a dataset generated with topological ground
states of the toric code and double semion model on a torus
with n = 12 qubits. The total number of samples is 500,
and the results are averaged over 5 independent runs.

to function, restraining its potential use to a set of tasks
which mostly fall into the classically simulable region.

Implications and Future Directions: At a fundamental level, our work shows that QCNNs solve tasks
by only exploring the classically simulable region of local observables on the initial states. Hence, for the
tasks where they have shown heuristic success [19-27|, there appears to be no need for running a classifying
model on a quantum computer as a classical algorithm with access to measurements can perform equally well.
Indeed, our results reveal that many heuristic benchmarks performed in the literature to showcase the power of
QML models could be misleading, and should be therefore revisited [28]. Our results leave open the possibility
that there could be future realizations of QCNNs where gradient flows lead to regions of the parameter space
where signals from global observables become important. However, we have found no evidence of that in our
explorations so far. Thus, from a practical point of view our realizations are extremely positive, as training
a classical model based on measurements (such as classical shadows) without running on-chip any variational
algorithm with expensive optimization loops results in major savings in terms of quantum resources.
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