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Variational Quantum Algorithms (VQA) are quantum-classical hybrid algorithms that
use current noisy quantum hardware to calculate computationally difficult problems in fields
such as quantum chemistry, quantum system dynamics, and combinatorial optimisation [1].
The classical component minimises across circuit parameters and can compensate for co-
herent errors that can be corrected with parametrised gates. However, current algorithms
require an unknown number of iterations to reach convergence and can be trapped in barren
plateaus for arbitrary initial values.

Methods exist to find warm starts that may avoid barren plateaus and typically require
pre-calculation of a similar problem and smooth translation of the global minimum or some
such mapping [2, 3, 4]. Rather than extra calculation, we aim to use existing calculations
from previously useful problems. Specifically, minimisation requires measurements on in-
termediate parameter values that are discarded once final parameters are found. These
intermediate steps across many calculations already contain valuable information about the
function between the circuit parameters and resultant measurements. We can use these
measurements to create a warm start for future experiments.

In this work, we use supervised machine learning on the parameter and measurement
data of VQA runs to create an algorithm to predict optimal parameters from initial measure-
ments. This neural network can be used as a replacement for classical optimisation and can
find global minima in one shot in noise free conditions. Furthermore, in noisy conditions,
we demonstrate that training data from devices with different gate setting error allows the
neural network to learn to compensate for devices with arbitrary gate setting error. We also
design the neural network to be used iteratively to confirm convergence as well as be able
to compensate for drift in noise over time. We benchmark and demonstrate our method on
noisy simulations as well as real data from IBM semiconductor devices for one, two, and
three qubit VQE calculations.

This work presents an alternative classical algorithm for VQAs that can find the approx-
imate global minimum with compensation for arbitrary coherent error. This algorithm can
be used when quantum shots are limited or expensive for one-shot approximations; or as a
warm start. This also demonstrates the utility of retaining a database of intermediate steps
across devices, even those with significant noise. We aim to release the neural networks
publicly and drive research in generating warm starts from collected quantum data.
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Figure 1: Comparison of Supervised Learning Neural Network minimisation algorithm
against COBYLA for ground state variational quantum eigensolver calculation of H2 with
Parity mapping and Z2 symmetry reduction. Our algorithm is able to find the global mini-
mum in one shot and three iterations converge within shot noise. COBYLA requires twelve
iterations to find the global minimum but fourteen to confirm convergence.
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Figure 2: H2 ground state at different atomic distances found by COBYLA and our Neural
Network with simulated noise. Noise model was taken from ibm hanoi with additional
gaussian random error with standard deviation of 0.1π radians on circuit parameters. The
converged value from COBYLA is reported, whereas the minimum over the same number
of iterations is shown from our Neural Network.
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