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Machine learning has revolutionized numerous domains by enabling machines
to learn complex patterns and relationships from vast amounts of data. This ca-
pability stems from the utilization of neural networks, which are inspired by
the structure of the human brain. Transformers have emerged as a particularly
successful architecture, excelling at tasks such as Natural Language Processing
(NLP) [1], computer vision tasks [2,3], audio processing [4] and numerous other
domains. They have become the backbone of many state-of-the-art NLP mod-
els like BERT [5], GPT [6], T5 [7], etc. Transformers depend on the attention
mechanism to capture dependencies and relationships within the data and focus
on “important” input segments that produce an output.

In the seemingly unrelated world of quantum mechanics, physicists use quan-
tum mechanical wave functions to model complex relations between particles in
a multi-particle quantum system. The repeated interactions between particles
often create quantum correlations or entanglement between them. The wave
function has become an indispensable tool for predicting the properties of quan-
tum mechanical systems.

Similarities between a quantum-mechanical wave function modeling relation-
ships between quantum particles and a deep neural network modeling the rela-
tionship between segments of a high-dimensional input are studied in [8, 9]. In
particular, [8] studies the structural equivalence between a function modeled by
a Convolutional Arithmetic Circuit (ConvAC) and a many-body quantum wave
function using the underlying Tensor Network (TN) structure. They make an
important observation that the ability of a ConvAC to represent correlations
between input regions is strongly related to quantum entanglement. Similarly,
the expressiveness of a CNN, or equivalently of a many-body wave function, is
related to their ability to model the intricate correlation between the inputs [8].
Hence, it is understandable that deep learning models such as CNN and recurrent
neural networks (RNN) can efficiently represent highly entangled quantum sys-
tems [9]. An Attention-based Quantum Transformer (AQT) was demonstrated
to not only outperform other neural-network-based models for Quantum State
Tomography (QST) but also accurately reconstruct the density matrix associ-
ated with a noisy quantum state experimentally realized on an IBMQ quantum
computer [10]. The success of the AQT is speculated to come from its ability to
model quantum entanglement across the entire quantum system, much as the at-
tention model for NLP captures the correlations among words in a sentence [10].
Similarly, a quantum-aware transformer (QAT) proposed to capture the com-
plex relationship between measured frequencies highlights the similarity between
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highly structured sentences in NLP and intrinsically structured measurements
in QST.

These works surmise a relation between inputs modeled by a deep learn-
ing model and the quantum entanglement between particles in a quantum wave
function. This leads to a natural question: Can the attention mechanism in the
transformer, which captures the relation between the input segments, take ad-
vantage of quantum entanglement? To answer this, we attempt to incorporate
quantum entanglement into the attention mechanism of a transformer.

1 Entanglement-based attention

This work only considers a transformer encoder composed of attention and fully
connected layers. The attention mechanism operates similarly to an information
retrieval system, where the output is value vectors V whose associated key vector
K is similar to the query vector q. The similarity function commonly used is the
dot product similarity. This is expressed as follows:

Attention(q, K, V) =
∑
i

Similarity(q,Ki)× Vi (1)

We incorporate quantum entanglement into the attention mechanism by re-
placing the similarity function used to compute the attention coefficients with a
measure of entanglement. The methodology followed is as follows:

1. Quantum embedding: The query and key vectors are encoded as quantum
states using a Quantum Feature Map (QFM). We use a QFM adapted from
the ArbitraryStatePreparation circuit in PennyLane [11].

2. Entangle quantum states: A Parameterized Quantum Circuit (PQC) is
applied to entangle the quantum embeddings of query and key vectors. We
use a modified version of the “circuit 14” as suggested in [12] due to its favor-
able expressibility and entangling capability, along with reasonable circuit
costs considering the number of parameters and circuit depth.

3. Measure entanglement: Attention coefficient αi,j is computed as a mea-
sure of entanglement between the query |Q⟩ and key |K⟩ states. The function
to compute a measure of entanglement using the PQC is as follows:

αi,j = Entanglement Measure(PQC(|Qi⟩ , |Kj⟩)) (2)

Attention(Qi,K, V ) =
∑
j

Softmax(
αi,j√
dk

)Vi,j (3)

Here, the dimension of the key vector dk is used to scale the attention coef-
ficients. We consider the following functions between query and key embed-
dings.
(a) Bipartite entanglement from FST: The entanglement entropy be-

tween sub-systems gives a measure of entanglement between query and
key state.
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Table 1: Text datasets

Model MC
Train

MC
Test

RP
Train

RP
Test

Classical 100 100 86.48 74.19
Bipartite
entanglement 100 100 81.08 70.96

Multipartite
entanglement 80.0 73.33 75.96 70.96

Swap test 82.85 73.33 79.72 67.74
QSANN
(altered) 58.57 56.66 67.57 54.84

QSANN
(original) 100.00 100.00 95.35 67.74

Table 2: MNIST dataset

Model MNIST
Train

MNIST
Test

Classical 54.27 51.23
Bipartite
entanglement 43.96 48.48

Swap test 42.19 46.00
QSANN
(altered) 10 13

QKSAN 13 8

Table 3: A comparison of accuracy on test datasets revealed that the bi-partitie
entanglement-based approach outperforms existing quantum attention models.

(b) Swap test: The controlled SWAP test is a prominent method to de-
termine the similarity of two pure states |ϕ⟩query and |ϕ⟩key. We use
the swap test as a base method to compare the efficacy of entanglement
measures.

(c) Multipartite entanglement using swap test: The swap test is mod-
ified to compute a measure of entanglement, concurrence Cn [13].

2 Experiments and results

The proposed methodology was implemented using the PennyLane [11] and Py-
Torch [14] libraries. The hyperparameters of the hybrid quantum-classical ar-
chitecture were selected to ensure that the performance depends significantly
on the attention layer. It was compared with a classical attention layer, Quan-
tum Self-Attention Neural Networks [15], and Quantum Kernel Self-Attention
Networks [16]. The approaches were tested on text classification datasets MC
and RP [15] and the MNIST dataset. We used an altered version of QSANN
to restrict the power of classical components. Table 1 and Table 2 compare the
performance of all the methods.

The architecture we use critically tests the attention layer, and we observe
that the entanglement-based approach performs better than the SWAP test and
Gaussian projected quantum self-attention. It outperforms existing quantum
attention-based methods but still lags behind classical attention. The results in-
dicate that entanglement measures can better capture relationships between the
words in a sentence. We observed that the time to compute entanglement mea-
sures is comparably higher. We plan to improve the efficiency of computing
entanglement measures using classical shadow techniques. We hope this work
motivates other researchers to explore how entanglement can be better incorpo-
rated into the attention mechanism.
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