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Abstract:


The intersection of Quantum Computing and Machine Learning, known as Quantum 
Machine Learning (QML), offers powerful tools to explore the frontiers of science, 
particularly in Astrophysics.


Astrophysics, heavily reliant on Big Data, requires fast, accurate, and reliable 
methodologies for data exploration and related discoveries. Scientists in this field are 
inundated with vast amounts of data from ground-based and satellite experiments. 
Consequently, the application of new methodologies such as Deep Learning (DL) in 
astrophysics is becoming essential. The use of DL methods to solve astrophysical 
problems is increasing exponentially, although the potential of Quantum DL remains 
largely unexplored.


In this work, we evaluate the performance of Quantum Convolutional Neural Networks 
(QCNNs) in astrophysical signal detection, focusing on Transient Gamma-Ray Bursts 
(GRBs).

GRBs are sudden explosions of gamma-rays, isotropically distributed and of 
cosmological origin. There are two types of GRBs: short-duration (less than two seconds), 
caused by the merger of two neutron stars or a neutron star and a black hole, and long-
duration (lasting several seconds to minutes), triggered by the collapse of a massive star 
and the birth of a black hole.


Our previous work (Rizzo et al. 2024) demonstrated that QCNNs can accurately identify 
GRB signals in AGILE space mission data. Building on this, we applied various QCNN 
architectures to a new dataset from Cherenkov Telescope Array (CTA) simulations.


The CTA, the next generation of ground-based observatories for high and very-high 
energy science, will enhance gamma-ray astronomy with over a hundred highly sensitive, 
fast-reacting Cherenkov telescopes. The facility will be equipped with real-time analysis 
software that automatically generates science alerts and analyzes ongoing observational 
data in real-time. Prompt and precise detection of GRB signals in real-time is crucial for 
generating reliable science alerts.


In this study, we utilized hybrid quantum-classical machine learning, implementing our 
Quantum Neural Network using Parametrized Quantum Circuits. We explored the 
performance of our QCNN using both Pennylane and Qiskit libraries. Additionally, we 
investigated different architectures and encoding methods, such as Data Reuploading, 
Angle, and Amplitude encoding.


Initially, we compared the performance of QCNNs with classical CNNs to assess 
improvements in terms of time and model complexity. We found that QCNNs achieved 
comparable accuracy levels, often exceeding 90%, with fewer parameters than classical 
CNNs. This reduction in parameter count suggests a more efficient model that could 
potentially offer benefits in terms of computational resources and energy consumption. 
However, the training times for QCNNs were notably longer due to the current lack of 
highly optimized quantum deep learning implementations. This indicates that while 
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QCNNs show promise, further development and optimization of quantum algorithms and 
hardware are necessary to fully realize their potential.


Subsequently, we conducted a comprehensive benchmark to study the effect of various 
hyperparameters on model accuracy and stability. We specifically examined the impact of 
the number of qubits, encoding methods, and the number of parameters. Our results 
showed that increasing the number of qubits and employing more sophisticated encoding 
methods, such as Data Reuploading, generally improved the model's performance. 
However, these improvements came at the cost of increased complexity and longer 
training times. The balance between accuracy and computational efficiency remains a 
critical factor in the practical application of QCNNs.


GRB signals can be represented as time series or sky maps (images), and we analyzed 
both types of datasets. For time series data, QCNNs demonstrated robust performance, 
accurately detecting GRB signals with a high degree of precision. When applied to sky 
maps, QCNNs also performed well, maintaining high accuracy levels. Notably, in both 
cases, QCNNs required fewer parameters than their classical counterparts, highlighting 
their potential for efficiency. However, in terms of time performance, QCNNs still do not 
show superiority. The longer training times observed underscore the need for 
advancements in quantum hardware and software optimization to make QCNNs a viable 
alternative to classical neural networks in real-time applications.


This work, being the first to study the application of QCNNs in Astrophysics, can pave the 
way for future experiments, highlighting the potential, advantages, and limitations of 
QCNNs in this field. By demonstrating that QCNNs can achieve similar accuracy to 
classical CNNs with fewer parameters, this study opens up new avenues for research and 
development. The insights gained from our benchmarks can inform future efforts to 
optimize quantum neural networks for specific astrophysical tasks, potentially leading to 
significant advancements in the speed and efficiency of data analysis in this data-
intensive field.


