Introduction Least squares, logistic regression, and the support vector machine (SVM) are
widely used techniques in statistical modeling and machine learning to unravel patterns, make
predictions, and derive meaningful insights from data. While least squares is used in regression
data fitting [1-8], logistic regression is specifically designed for binary classification problems [9-
14]. The SVM classifies vectors in a feature space into one of two sets, given training data from
the sets [15H19].

Online learning algorithms have gained much attention in recent decades, in both the aca-
demic and industrial sectors [20-26]. In this framework, the following sequence of events takes
place in every time step t € [T'] for some fixed T' € Z,: 1) The learner receives an unlabelled
example z(®); 2) The learner makes a prediction gj(t) based on an existing weight vector w®;
3) The learner receives the true label y® and suffers a loss L(w(t),:c(t),y(t)) that is convex in
w®; 4) The learner updates the weight vector according to some update rule. The regret of an
online algorithm is defined as the difference between the total loss incurred by using a certain
sequence of strategies and the total loss incurred by using the best fixed strategy in hindsight.
Speciﬁcall Regret = %ZtT:l L (w(t), x(t),y(t)) — min,cpd %Zle L (u, xz®), y(t)), where u is
some fixed strategy. Seeing the importance of sparse solutions in the era of big data and the
strength of online algorithms [27-29], Ref. [30] developed a method to obtain sparsity via trun-
cated gradient descent, showing a near-optimal online regret bound of O(1/+/T). In their work,
the following assumptions are made.

Assumption 1. For every t e [T],
(i) The loss function L (w(t), :L‘(t),y(t)) is convex in w® for all & y®).

(i) There exist constants A, B € R~ such that va(t)L (w(t),x(t), y(t)) H; < AL (w(t)ja:(t), y(t)) +
B for all z® y®).

(iii) sup, ||z®]2 < C, , for some constant C € Ry

Ref. [30] pointed out some common loss functions of linear prediction problems with corre-
sponding choices of parameters A and B (which are not necessarily unique), under the assump-
tion that sup, ||z ]2 < C. Among them are

e Logistic: In (1 + exp (—w®T2® . y(t))); A =0,B = C?%,y® e {£1} for all t € [T].

e SVM (hinge loss): max {0,1 —w®Tz® . y(t)}; A =0,B = C?,y® € {£1} for all t € [T)].
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e Least squares (square loss): (w(t)T:(:(t) — y(t)) :A=4C%* B =0,y" eR for all t € [T].

Our contribution In this work, we present the first quantum online algorithm that outputs a
sparse solution for least squares, logistic regression and the SVM. Our work is based on Ref. [30],
and hence the guarantees of our algorithm hold under the same assumptions as [30]. Our
quantum algorithm uses subroutines such as quantum norm and inner product estimation and
quantum state preparation, which are based on the recent technique of non-destructive unbiased
quantum amplitude amplification [31-33]. We show that our quantum algorithm maintains the
O(1/V/T) regret bound of Ref. [30] while achieving a quadratic speedup in the dimension d of
the problem. This speedup is noticeable when 1" > ﬁ. Our algorithms also take advantage
of unitaries that perform efficient arithmetic computation to compute every entry of the weight
vector at any time step. This allows us to save on the space/memory of the algorithm for storing
the weight vectors, which is O(d) in Ref. [30]. We summarize our results in the Table

!Strictly speaking, this is the per-step regret as we normalize by T. While the conventional regret is the
unnormalized version, we nevertheless call this the regret in this paper.



Table 1: Summary of results. In this work, d is the dimension of the weight vectors, C, D, gmax
are constants, ¢ is the failure probability, u* is the best fixed wieght vector in hindsight.

Problem Runtime Regret

Ref. [30] | Our work Ref. [30] | Our work
Least squares o(Td) | O (T3/2\/E10g %> 022”\/“;‘@ cz(CDW\/m%XJrHu*H%)
Logistic regression || O(T'd) 9] <T3/2\/310g %) CQ”;;!—EH 1+02(2+293;(+HU*”%)
SVM o(Td) |0 <T3/2\/310g %> 02||2u;¥g+1 2+C2(g;3;%+\\u*||g)

Data input and quantum subroutines We assume quantum access to the entries of the
unlabelled examples. The online nature of the problem is given by the fact that we obtain these
example oracles at different times.

Data Input 1 (Online example oracle). Let 2 o 2™ e R be unlabelled exzamples. Define
the unitary U,w) operating on O(logd) qubits such that for all j € [d] and t € [T], Uy |7)]0) =
|7 |x§-t)>. At time t € [T], assume access to Uy, -+, Uw).

We define between and comparison oracles which will be used in the truncation unitary.

Definition 1 (Between and comparison oracles). Let a,b,z,y € R and B € {0,1}. We say that

we have access to a between oracle Oy qp and a comparison oracle O comp if we have access to
unitaries Uppp,abp and Ucomp that performs

[2)[1), ifa<a<b
|z)[0), otherwise

|B)|z) |max(x,0)), if B=1

Uptwap |2)[0) — { |B) |«) |min(z,0)), if B =0

v Ucomp |B) [2)10) = {

Lemma 1 (Truncation unitary). Let 6,a € Rog. Assuming access to oracles in Def there

exists a unitary Ut 9 operator that does the following operation up to sufficient accuracy in
constant time.

| max{zr —a,0}), if 0 <z <40
Urap:|z) — { |min{z + a,0}), if —0 <z <0 (1)

|x), otherwise

The lemma below makes use of the truncation unitary to allow for efficient computation of
the weight vector at every time step for all three problems of interest.

Lemma 2. Let 0 € Rog. For all t € [T], let there be given the set of unitaries U,w) as in
Data Input vectors y = (yM, - y®), 5 = (FM,--- ,5®) € R* and a real number n € Rxy.
Assuming access to a gravity sequence (g(l), ce ,g(T)) and a truncation oracle as in Lemma
there exists a unitary operators that perform the following operations for different cases:

(1) Least squares : 5[0y — |j)|T <w;t) +2n (y(t) - gj(t)) xg-t),g(t)nﬂ) >

(t) —y(D) (1)
(ii) Logistic regression: |j) |0y — |5)|T w4 QHM gDn,0));
: b lte—v®g® Uz )

DT (o4 00,0, 050 <1

i) SVM: |5)]0) —
( ) ’ >| > ‘j>|T w](t)’g(t)n7 (9>>, otherwise



to sufficient numerical precision. This computation takes one query to the data input and requires
O(T + logd) qubits and quantum gates.

We also use quantum state preparation, norm and inner product estimation subroutines from
References [34H38] based on nondestructive unbiased amplitude estimation [31-33].

Main results We prove regret bounds for our quantum algorithm applied to least squares,
logistic regression and the SVM.

Theorem 1. Let €,6 € (0,1) and C, D, gmax € Ry. Let u € R? be any vector and for t € [T, let
3D be an additive estimate of §©) = wOTz®) of error e;p and Q) (V) 1= Hv -1 (‘w(tﬂ)‘ < 0)
(t+1)

Iy

for a fized vector w e R? and some vector v e R?, with G+ (V) being its eadditive stimate.

With success probability 1 — § and in time O (T3/2\/Elog %), under Assumptions ,there
erists a quantum algorithm for sparse online learning that achieves for

(i) Least squares, a regret of

N [ 0 _ ) _ (T ® — ) 4 (t+1>] C2 (CD + gmax + [ul3)
= — —|u " — + < )
Tt:Zl (59 - y®) y®) +9Q T

where ’y(t) — ;Q(t)‘ < D for allt e [T];

(ii) Logistic regression, a regret of

T 2 2
1 - 14 C2 (2 + gmax +
E : [In (1 efy(”y(”) In (1 e*y(t)uTx(t)) g(t)Q(tH)] < ( 9ma H“H2) :

(iii) the SVM, a regret of

1 I + + 2+ C2 (gm x T HUHz)
il — W@ (1 Z @y, T ® ®) ot+1) a 2
Tt§—1[<l g ) (1 yulx ) +g"Q ]< T

where QD) — (q~(w+1) (w(t+1)) _ q“’“””(u)).

Conclusion We proposed quantum online learning algorithms that output sparse solutions
for least squares, logistic regression and the SVM. Our quantum algorithm achieves a quadratic
speedup in the dimension of the problem as compared to its classical counterparts.Leveraging
on unitaries that perform efficient arithmetic computation, we save on the space/memory of the
algorithm.

We point out that our quantum algorithm having a run time that achieves quadratic im-
provement in the dimension d of the weight vector, its dependence on the number of time steps
T increases. One natural question would be to ask if the trade-off between T" and d can be
avoided. Besides that, it would be interesting to explore how other variants of gradient de-
scent such as mirror descent or stochastic gradient descent, combined with different ”feature
selection” techniques to obtain sparse solutions can contribute to an improvement in the regret
bound. Considering that we have a unitary that computes entries of the weight vector that is
updated via truncated gradient descent , one could consider potential applications of this uni-
tary, for example in reinforcement learning [39]. On the other hand, one could explore possible
applications of quantum algorithms in obtaining sparse solutions in the online learning setting
as there has not been any work done in this regime. Instead of analyzing the (static) regret,
one could consider studying the dynamic regret of the online algorithm which can be useful in
scenarios where the optimal solution keeps changing in evolving environments [40H46].
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