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Quantum machine learning (QML) is considered to require significant quantum resources to
achieve quantum advantage. Research should prioritize both the efficient design of quantum ar-
chitectures and learning strategies to optimize resource usage. We propose a framework of quantum
curriculum learning (Q-CurL) for quantum data, where the curriculum introduces auxiliary tasks or
data to the learning model before progressing to more challenging ones. Theoretically, we define the
curriculum criteria based on the data density ratio between tasks to determine the curriculum order
and implement a data-based dynamic learning schedule in optimizing the loss function. Empirical
evidence shows that Q-CurL enhances the training convergence and the generalization for unitary
learning tasks and improves the robustness of quantum phase recognition tasks. Our framework
provides a general learning strategy, bringing QML closer to realizing practical advantages.

Introduction.— There is a question as to whether speed is the only metric by which quantum machine learning
(QML) algorithms should be judged. The hope is that QML can detect correlations in the data or generate new
patterns that would be very difficult for classical algorithms to achieve, even though there is no clear evidence that
classical data inherently requires quantum effects. This suggests a fundamental shift in the research community’s
perspective: it is preferable to use QML on data that is already quantum in nature.

Without being confined to proving a speed-up, how can we improve current QML algorithms? This question
refocuses our attention on the concept of learning. In machine learning (ML), learning refers to the process through
which a computer system enhances its performance on a specific task over time by acquiring and integrating knowledge
or patterns from data. We can improve current QML algorithms by making this learning process more efficient.

Curriculum learning is inspired by the human learning process, based on the intuitive observation that we often
begin with simpler concepts before progressing to more complex ones. In ML, this insight leads to the development of a
strategy for sampling or task scheduling—a curriculum [1]. The investigation of curriculum learning in the QML field,
especially regarding quantum data, is still in the early stages. The most relevant research has focused on investigating
model transfer learning within hybrid classical-quantum neural networks [2]. Typically, this involves starting with a
pre-trained classical network that is then modified and enhanced by adding a variational quantum circuit. Despite
the potential benefits, there is still a lack of concrete evidence that effectively using a curriculum learning framework
to schedule tasks and samples improves QML techniques.

We demonstrate the feasibility of implementing curriculum learning in a quantum data framework called quantum
curriculum learning (Q-CurL). We present two principal approaches: task-based [Fig. 1(a)] and data-based [Fig. 1(b)]
Q-CurL. In the task-based approach, we examine scenarios where a main task, potentially challenging or limited
by data availability, can be facilitated through the preparatory parameter adjustment of an auxiliary task, which is
comparatively easier or more data-rich. In the data-based approach, we introduce a dynamic learning schedule that
adjusts data weights, thereby prioritizing the importance of data in minimizing the loss function.

FIG. 1. Overview of two principal methodologies in quantum curriculum learning: (a) task-based and (b) data-based approaches.
In the task-based approach, a model M, designated for a main task that may be challenging or constrained by data accessibility,
benefits from pre-training on an auxiliary task. This auxiliary task is either relatively simpler (left panel of (a)) or has a richer
dataset (right panel of (a)). In the data-based approach, we implement a dynamic learning schedule to modulate data weights,
thereby emphasizing the significance of quantum data in optimizing the loss function to reduce generalization error.
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Task-based Q-CurL.— Unlike classical ML, which generally assumes a fixed amount of training data for all tasks,
QML must navigate limited quantum resources. Therefore, the order of tasks and the allocation of training data to
each task are crucial in QML. Efficient task scheduling can reduce the resources needed for training the main task,
bringing QML closer to practical, real-world applications.

The goal of learning is to find a hypothesis model h : X → Y within a hypothesis set H that approximates the
true function f such that h(x) ≈ f(x). The loss function ℓ : Y × Y → R is used to measure the approximation error
ℓ(h(x),y) between the prediction h(x) and the target y. We aim to find a hypothesis h ∈ H that minimizes the
expected risk over the distribution P (X ,Y). In practice, since the data generation distribution P (X ,Y) is unknown,

we use the observed dataset D = (xi,yi)
N
i=1 ⊂ X ×Y to minimize the empirical risk, defined as the average loss over

the training data: R̂(h) = 1
N

∑N
i=1 ℓ(h(xi),yi).

Given a main task TM , the goal of task-based Q-CurL is to design a curriculum for solving auxiliary tasks to enhance
performance compared to solving the main task alone. We consider T1, . . . , TM−1 as the set of auxiliary tasks. The

training data
(
x
(m)
i ,y

(m)
i

)
for task Tm are drawn from the probability distribution P (m)(X (m),Y(m)) with the density

p(m)(X (m),Y(m)). We assume that all tasks share the same data spaces X (m) ≡ X and Y(m) ≡ Y, as well as the same
hypothesis h and loss function ℓ for all m.
We propose the curriculum weight cM,m, where a larger cM,m indicates a greater benefit of solving Tm for improving

the performance on TM . We evaluate the contribution of solving task Ti to the main task TM by transforming the

expected risk of training TM as RTM
(h) = E(x,y)∼P (M) [ℓ(h(x),y)] = E(x,y)∼P (m)

[
p(M)(x,y)

p(m)(x,y)
ℓ(h(x),y)

]
.

The curriculum weight cM,m can be determined using the density ratio r(x,y) =
p(M)(x,y)

p(m)(x,y)
without requiring

the density estimation of p(M)(x,y) and p(m)(x,y). The key idea is to model the density ratio function r(x,y)

using a linear model: r̂(x,y) := α⊤ϕ(x,y) =
∑NM

i=1 αiϕi(x,y), where the vector of basis functions is ϕ(x,y) =
(ϕ1(x,y), . . . , ϕNM

(x,y)), and the parameter vector α = (α1, . . . , αNM
)⊤ is learned from data.

For quantum data, ϕl(x,y) is naturally defined as the product of global fidelity used to compare two pairs of input

and output states as ϕl(x,y) = Tr[xx
(M)
l ] Tr[yy

(M)
l ]. The parameter vector α is estimated by minimizing

1

2Nm

Nm∑
i=1

r̂2α(x
(m)
i ,y

(m)
i )− 1
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NM∑
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r̂α(x
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(M)
i ) +

λ

2
∥α∥22. (1)

We can consider each r̂(x
(m)
i ,y

(m)
i ) as the contribution of the data (x

(m)
i ,y

(m)
i ) from the auxiliary task Tm to the

main task TM . We then define the curriculum weight cM,m as:

cM,m =
1

Nm

Nm∑
i=1

r̂α(x
(m)
i ,y

(m)
i ). (2)

We propose a Q-CurL game to examine the effect of Q-CurL. In this game, Alice has a machine learning model
M(θ) and wants to solve the main task TM , but she needs to solve all the auxiliary tasks T1, . . . , TM−1 first. An
assumption for data-access efficiency is data forgetting in task transfer, meaning that after solving task A, only the
trained parameters θA are transferred as the initial parameters for task B. We propose the following greedy algorithm
to decide the curriculum order Ti1 → Ti2 → . . . → TiM=M before training. Starting from the main task TiM , we find
the auxiliary task TiM−1

(iM−1 ∈ {1, 2, . . . ,M − 1}) with the highest curriculum weights ciM ,iM−1
. Similarity, to solve

the task TiM−1
, we find the auxiliary task TiM−2

in the remaining tasks with the highest ciM−1,iM−2
, and so on.

As a demonstration of the curriculum criteria based on cM,m, we consider learning the unitary evolution of the

XY -Hamiltonian HXY =
∑N

j=1

(
σx
j σ

x
j+1 + σy

j σ
y
j+1 + hjσ

z
j

)
, where hj ∈ R and σx

j , σ
y
j , σ

z
j are the Pauli operators

acting on qubit j. We represent the time evolution of HXY via the ansatz VXY , which is similar to the Trotterized

version of exp(−iτHXY ). The unitary for the main task, V
(M)
XY =

∏LM

l=1 V
(l)(βl)

∏LF

l=1 V
(l)
fixed, consists of LM = 20

repeating layers, where each layer V (l)(βl) includes parameterized z-rotations RZ (with assigned parameter βl) and

non-parameterized nearest-neighbor
√
iSWAP gates. Additionally, we include the fixed-depth unitary

∏LF

l=1 V
(l)
fixed with

LF = 20 layers at the end of the circuit V (l) to increase expressivity. Similarity, keeping the same parameters βl, we

create the target unitary for the auxiliary tasks Tm as V
(m)
XY =

∏Lm

l=1 V
(l)(βl)

∏LF

l=1 V
(l)
fixed, with Lm = 1, 2, . . . , 19.

Figure 2(a) depicts the average training loss and test loss for different training epochs and different numbers of
training data (N = 10, 20). Introducing Q-CurL can significantly improve the trainability (lower training loss) and
generalization (lower test loss) when compared with random order in Q-CurL game.
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FIG. 2. (a) The average training loss and test loss for different training epochs and different numbers N of training data in the
Q-CurL game, considering both random and Q-CurL orders. (b) The generalization of the trained QCNN on the ground state
data in the quantum phase recognition task with Q = 8 qubits under varying noise levels in corrupted labels.

Data-based Q-CurL.— We present a form of data-based Q-CurL that dynamically predicts the easiness of each
sample at each training epoch, such that easy samples are emphasized with large weights during the early stages of
training and vice versa. Apart from improving generalization, this approach’s benefit lies in its resistance to noise,
which is especially needed in QML. For example, as observed in Ref. [3], existing QML models can accurately fit
partially corrupted labels to quantum states in the training data but fail on the test data. We show that data-based
Q-CurL can enhance the robustness based on the dynamic weighting of the difficulty fitting to corrupted labels.

Inspired by the confidence-aware techniques in classical ML, the key idea is to modify the empirical risk as R̂(h,w) =
1

N

∑N
i=1

(
(ℓi − η)ewi + γ|wi|2

)
. Here, w = (w1, . . . , wN ), ℓi = ℓ(h(xi),yi), and |wi|2 is the regularization term

controlled by the hyper-parameter γ > 0. The threshold η distinguishes easy and hard samples with wi emphasizing
the loss li ≪ β (easy sample) and neglecting the loss li ≫ β (hard samples, such as training data with corrupted
labels). The minimization problem is reduced to minθminwR̂(h,w), where minwR̂(h,w) is decomposed at each loss
ℓi and solved without quantum resources as wi = argminw(li − η)ew + γ|w|2. To control the difficulty of the samples,
in each training epoch, we set η as the average value of all ℓi obtained from the previous epoch. Therefore, η changes
dynamically during the early stages of training but remains constant during the convergence periods.

We apply the data-based Q-CurL to the quantum phase recognition task investigated in Ref. [4] to demonstrate
that it can improve the generalization of the learning model. We employ the quantum convolutional neural network
(QCNN) model with binary cross-entropy loss. Without Q-CurL, we use the conventional loss R̂(h) = (1/N)

∑N
i=1 ℓi

for the training and test phase. In data-based Q-CurL, we train the QCNN with the loss R̂(h,w), while using R̂(h)
to evaluate the generalization on the test data set.

To evaluate the effectiveness of Q-CurL in emphasizing the loss function based on the difficulty of the training
data, we consider the scenario of fitting corrupted labels. Given a probability p (0 ≤ p ≤ 1) representing the noise
level, the label yi of quantum state |ψi⟩ is transformed to the corrupted label 1 − yi with probability p, while it
remains the true label with probability 1− p. Figure 2(b) illustrates the performance of trained QCNN on test data
across different noise levels in corrupted training labels. There is no significant difference at low noise levels, but as
the noise level increases, the conventional training procedure fails to generalize effectively. In this case, introducing
data-based Q-CurL in the training process (red lines) reduces the test loss and enhances testing accuracy compared
to the conventional training method (blue lines).

Conclusion.— The proposed Q-CurL framework can enhance training convergence and generalization in QML
with quantum data. Future investigations should examine whether Q-CurL can be designed to improve trainability
in QML, such as by avoiding the barren plateau problem.
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