

Quantum Curriculum Learning

Quoc Hoan Tran, Yasuhiro Endo, Hirotaka Oshima Quantum Laboratory, Fujitsu Research, Fujitsu Limited

Application: Learning Unitary Dynamics

Task: learning an unknown unitary V dynamics with N query $\mathcal{D}_{\mathcal{Q}}(N) = \{(|x_j\rangle, |y_j\rangle\}$ $j=1$ \overline{N}

Find a decoder $U^{\dagger}(\boldsymbol{\theta})$ to minimize

Task-based Q-CurL

Curriculum Learning (CurL) for quantum data

Mimic human intelligence in learning concepts

Introduce the data dynamics to the loss function

Task: given ground state data with noisy labeling, train a quantum model that demonstrates robustness and generalizes effectively to unseen data.

Given a main task T_M and a set of auxiliary tasks T_m , task-based **Q-CurL assigns a curriculum weight** $c(T_M, T_m)$ to select the most beneficial auxiliary task

[1] Q. H. Tran et al., **arXiv**:2407.02419 (2024)

Assume that all tasks share the same hypothesis h, the expected risk of the main task is transformed as

We propose two methods of CurL with quantum data (Q-CurL)

✓ **Task-based Q-CurL**: use for training main task with limited resource in but having auxiliary tasks with high training resource

Derive a criteria to select the most beneficial auxiliary task

The curriculum weight (higher weight means better curriculum)

- ✓ **Data-based Q-CurL**: use for training with noisy data or corrupted labelling
	-

Only classical resources

 $\checkmark \quad \ell_i(\theta) \ll \eta \to w_i$ is big

 $l=1$ The **fidelity-based kernel** $\phi_l(x,y) = \mathrm{Tr} \left| xx_l \right\rangle$ (M) $\text{Tr}\left[\mathbf{y}\mathbf{y}\right]_l$ (M)

 $\checkmark \quad \ell_i(\theta) \gg \eta \to w_i$ is small $\mathbf{v} \cdot \mathbf{\eta} = \mathcal{L}^c(\boldsymbol{\theta})$ conventional loss from the previous training epoch

Dynamical learning of data weight

$$
R_{\mathcal{T}_M}(h) = \mathbb{E}_{(x,y)\sim P^{(M)}}[\ell(h(x), y)] = \mathbb{E}_{(x,y)\sim P^{(m)}}\left[\frac{p^{(M)}(x, y)}{p^{(m)}(x, y)}\ell(h(x), y)\right]
$$

Ratio of data density $r(x, y) = \frac{p^{(M)}(x, y)}{p^{(m)}(x, y)}$ evaluates the contribution of data in \mathcal{T}_m to \mathcal{T}_M . Approximate by linear model:

$$
r(x, y) \approx r_\alpha(x, y) = \alpha^T \phi(x, y) = \sum_{i=1}^{N_M} \alpha_i \phi_i(x, y)
$$

QCNN (I. Cong et al., **Nat. Phys.** 15, 1273, 2019) architecture to train the quantum data with label $= 1$ for SPT and 0 for other phases

Corrupted labelling: flip each training label with a probability $p (= 0.3)$ in the above diagrams)

1

2

Find α via the minimization of

Q-CurL game: Find a proper order of solving all auxiliary tasks $\mathcal{T}_1, \ldots, \mathcal{T}_{M-1}$ to obtain the

$$
\mathcal{L}^{d}(\boldsymbol{\theta}, \boldsymbol{w}, \lambda) = \frac{1}{N} \sum_{i=1}^{N} [\ell_i(\boldsymbol{\theta}) - \eta] w_i + \lambda Reg(w_i)
$$

$$
\min_{\theta}\min_{\mathbf{w}}\mathcal{L}^{d}(\theta,\mathbf{w},\lambda)
$$

Data-based Q-CurL enhances the robustness by dynamically weighting data difficulty

Dynamical loss function Single loss $\ell_i(\boldsymbol{\theta}) = \ell(h(x_i), y_i)$ **Conventional global loss** $\mathcal{L}^c(\theta) =$ 1 \overline{N} $\left\langle \right\rangle$ $i=1$ \overline{N} $\ell_i(\bm{\theta})$

$$
C_{\mathcal{D}_{\mathcal{Q}}(N)}(\boldsymbol{\theta}) = 1 - \frac{1}{N} \sum_{j=1}^{N} \left| \langle y_j | U(\boldsymbol{\theta}) | x_j \rangle \right|^2
$$

Enhance the accuracy in learning dynamics of the spin-1/2 XY

model (see [1] for more details) Enhance the robustness of phase detection (see [1] for more details)

Data-based Q-CurL

Application: Learning Noisy-labelled Quantum Phase

No increasing quantum resource

Ground states of the one-dimensional cluster Ising model exhibits different phases (SPT, antiferromagnetics, and paramagnetic)

$$
H = -J\sum_{k} Z_{k}X_{k+1}Z_{k+2} - h_{1}\sum_{k} X_{k} - h_{2}\sum_{k} X_{k}X_{k+1}
$$

