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Application: Learning Unitary Dynamics

Task-based Q-CurL

Curriculum Learning (CurL) for quantum data
Mimic human intelligence in learning concepts

Aim to increase the generalization and reliability of the prediction

Task: learning an unknown 
unitary V dynamics with N query 

Task: given ground state data with noisy labeling, train a quantum model 
that demonstrates robustness and generalizes effectively to unseen data.

[1] Q. H. Tran et al., arXiv:2407.02419 (2024)

(Y. Bengio et al., ICML 2019)

Easy task and data

Difficult task and data

We propose two methods of CurL with quantum data (Q-CurL)

✓ Task-based Q-CurL: use for training main task with limited 
resource in but having auxiliary tasks with high training resource

✓ Data-based Q-CurL: use for training with noisy data or corrupted 
labelling 

Only classical resources

Given a main task 𝒯𝑀 and a set 
of auxiliary tasks 𝒯𝑚, task-based 
Q-CurL assigns a curriculum 
weight 𝑐(𝒯𝑀, 𝒯𝑚) to select the 
most beneficial auxiliary task
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Assume that all tasks share the same hypothesis ℎ, the expected risk of 
the main task is transformed as

Ratio of data density  𝑟 𝒙, 𝒚 =
𝑝 𝑀 (𝒙,𝒚)

𝑝 𝑚 (𝒙,𝒚)
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The curriculum weight (higher 
weight means better curriculum)
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✓  ℓ𝑖 𝜽 ≪ 𝜂 → 𝑤𝑖 is big

✓  ℓ𝑖 𝜽 ≫ 𝜂 → 𝑤𝑖 is small

✓  𝜂 = ℒ𝑐 𝜽  

conventional loss from the 
previous training epoch

Single loss ℓ𝑖 𝜽 = ℓ(𝒉 𝒙𝑖 , 𝒚𝑖)

Data-based Q-CurL enhances the robustness by dynamically 
weighting data difficulty
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Find a decoder 𝑈†(𝜽) to minimize
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Greedy algorithm 
with curriculum 
weight

𝒯𝑖𝑀=𝑀 ← 𝒯𝑖𝑀−1
← 𝒯𝑖𝑀−2

← ⋯ ← 𝒯𝑖1

𝒯𝑖𝑘
← 𝒯𝑖𝑘−1

 𝑠. 𝑡. 𝑖𝑘−1 = argmax
𝑗∈1,𝑀/{𝑖𝑀,…,𝑖𝑘}

𝑐(𝒯𝑖𝑘
, 𝒯𝑗)

Enhance the accuracy in learning 
dynamics of the spin-1/2 XY 
model (see [1] for more details) Enhance the robustness of phase detection (see [1] for more details)
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Data-based Q-CurL

Application: Learning Noisy-labelled Quantum Phase

Conventional global loss ℒ𝑐 𝜽 =
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No increasing quantum resource

Ground states of the one-dimensional cluster Ising model exhibits 
different phases (SPT, antiferromagnetics, and paramagnetic) 
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QCNN (I. Cong et al., Nat. Phys. 15, 1273, 2019) architecture to train 
the quantum data with label = 1 for SPT and 0 for other phases 

Corrupted labelling: flip each training label with a probability 𝑝 (= 0.3 
in the above diagrams)

Task 𝒯𝑚: m variational layers for Trotterized  
approximation of  𝑉 = exp(−𝑖𝐻𝑋𝑌𝑡)
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Derive a criteria to select the most beneficial auxiliary task

Introduce the data dynamics to the loss function
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Q-CurL game: Find a proper order of solving 
all auxiliary tasks 𝒯1, … , 𝒯𝑀−1 to obtain the 
best performance of 𝒯𝑀 (𝑀 = 20)
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