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In a manner analogous to their classical counterparts,
quantum classifiers are vulnerable to adversarial attacks that
perturb their inputs. A promising countermeasure is to train the
quantum classifier by adopting an attack-aware, or adversarial,
loss function. This paper studies the generalization properties
of quantum classifiers that are adversarially trained against
bounded-norm white-box attacks.

Problem Setting: As illustrated in Fig. 1(a), a classical input
x is embedded into a quantum state ρ(x) by a fixed and known
quantum embedding map x 7→ ρ(x). Let c ∈ {1, . . . ,K}
denote the correct label assigned to input x. The classical
tuple (x, c) is generated from an unknown data distribution
P (x, c). We assume x to be discrete-valued to avoid some
technicalities, but the analysis can be extended to continuous-
valued inputs x.

Fig. 1: Quantum machine learning model

The quantum classifier consists of a POVM applied to the
quantum embedding ρ(x). The POVM Π = {Πc}Kc=1 is de-
fined by positive semi-definite matrices Πc, for c = 1, . . . ,K,
that satisfy the equality

∑K
c=1 Πc = I , where I denotes the

identity matrix. We use M = {Π : Πc ≥ 0,
∑K

c=1 Πc = I} to
denote the set of all POVMs. We consider as loss function

ℓ(Π, ρ(x), c) = 1− Tr(Πcρ(x)), (1)

the probability of misclassifying ρ(x) given its true label c.
In an adversarial setting, as illustrated in Fig. 1(b), a

quantum adversary can perturb the input quantum state ρ(x)
with the goal of maximizing the classifier’s loss. Specifically,
we consider an adversary that perturbs the input state ρ(x) into
a state τ that is ϵ-close to the original state ρ(x) in p-Schatten
distance, i.e., Dp(ρ(x), τ) = ∥ρ(x) − τ∥p ≤ ϵ . Targeting
a worst-case scenario, the adversary is assumed to know the
quantum classifier Π and the loss function (1), resulting in
white-box attacks. This results in the following adversarial
loss of the classifier Π on data tuple (ρ(x), c),

ℓp,ϵ(Π, ρ(x), c) = max
τ :Dp(τ,ρ(x)≤ϵ)

ℓ(Π, τ, c). (2)

In adversarial training, the quantum classifier is assumed to
be aware of the presence of the adversary, and is trained by
optimizing the adversarial training risk,
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L̂p,ϵ(Π, T ) =
1

T

T∑
n=1

ℓp,ϵ(Π, ρ(xn), cn),

the empirical average of the adversarial loss over the train-
ing set T = {(xn, cn)}Tn=1 of i.i.d tuples generated from
distribution P (x, c). The goal is to ensure that the adversar-
ially trained quantum classifier incurs minimum adversarial
population risk, Lp,ϵ(Π) = EP (x,c)[ℓp,ϵ(Π, ρ(x), c)], on new,
previously unseen perturbed data. We define the adversarial
generalization error of the classifier Π ∈ M as

Gp,ϵ(Π, T ) = Lp,ϵ(Π)− L̂p,ϵ(Π, T ). (3)

Characterizing the Adversarial Generalization Error: To
upper bound the adversarial generalization error in (3), we
use the classical uniform convergence result from statistical
learning theory. This gives that with probability at least 1− δ,
for δ ∈ (0, 1), over random draws of the dataset, the following
inequality holds:

Gp,ϵ(Π, T ) ≤ 2Rp,ϵ(M) +
√

2 log(2/δ)/T , where (4)

Rp,ϵ(M) = ET Eσ

[
supΠ∈M

1
T

∑T
n=1 σnℓp,ϵ(Π, ρ(xn), cn)

]
is the adversarial Rademacher complexity with {σn}Tn=1 de-
noting i.i.d Rademacher variables.

Assumption: The quantum embedding map x 7→ ρ(x)
is such that the minimum eigenvalue of ρ(x) satisfies
λmin(ρ(x)) ≥ ϵ.

Result 1: Adversarial Rademacher complexity of binary
classifiers is never smaller than in the non-adversarial setting.
Specifically, we have the following relationship

R(M) ≤ Rp,ϵ(M) ≤ R(M) +
√
2/Tϵd1−1/p. (5)

where R(M) = Rp,0(M) is the non-adversarial Rademacher
complexity and d denotes the dimension of the Hilbert space.
Furthermore, contrary to the classical setting, the dimensional
dependence of the upper bound (5) is a consequence of the
choice of attack. In particular, only for p = 1 attack, the bound
is independent of the dimension d.

Result 2: Adversarial generalization error of K-class clas-
sifiers scale as O(

√
K/T (

√
2I2(X:Q)+ϵd1−1/p)). Specifically,

the following inequality holds with probability at least 1− δ,

Gp,ϵ(Π, T ) ≤
√

K

T
2I2(X:Q) + 2

√
K

T
ϵd1−1/p +

√
2

T
log(2/δ)

where I2(X : Q) = log2

(
Tr

√∑
x P (x)ρ(x)2

)2

is the 2-
Rényi mutual information between the subsystems Q and X
of the classical-quantum state ρCXQ =

∑
x P (x, c)|cx⟩⟨cx|⊗

ρ(x). The first term corresponds an upper bound on the non-
adversarial Rademacher complexity, which is improved by a
factor of 2 over previous works.


