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In a manner analogous to their classical counterparts,
quantum classifiers are vulnerable to adversarial attacks that
perturb their inputs. A promising countermeasure is to train the
quantum classifier by adopting an attack-aware, or adversarial,
loss function. This paper studies the generalization properties
of quantum classifiers that are adversarially trained against
bounded-norm white-box attacks.

Problem Setting: As illustrated in Fig. 1(a), a classical input
x is embedded into a quantum state p(z) by a fixed and known
quantum embedding map = — p(x). Let ¢ € {1,...,K}
denote the correct label assigned to input z. The classical
tuple (x,c) is generated from an unknown data distribution
P(z,c). We assume z to be discrete-valued to avoid some
technicalities, but the analysis can be extended to continuous-
valued inputs x.
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Fig. 1: Quantum machine learning model

The quantum classifier consists of a POVM applied to the
quantum embedding p(x). The POVM II = {II.}X | is de-
fined by positive semi-definite matrices II., forc=1,... K,
that satisfy the equality Zﬁil II. = I, where I denotes the
identity matrix. We use M = {II : II, > 0, Zle II.=1}to
denote the set of all POVMs. We consider as loss function

(I, p(), ¢) = 1 = Tr(Ilep()), ey

the probability of misclassifying p(x) given its true label c.

In an adversarial setting, as illustrated in Fig. 1(b), a
quantum adversary can perturb the input quantum state p(x)
with the goal of maximizing the classifier’s loss. Specifically,
we consider an adversary that perturbs the input state p(x) into
a state 7 that is e-close to the original state p(x) in p-Schatten
distance, i.e., Dy(p(z),7) = ||p(z) — 7|, < € . Targeting
a worst-case scenario, the adversary is assumed to know the
quantum classifier II and the loss function (1), resulting in
white-box attacks. This results in the following adversarial
loss of the classifier IT on data tuple (p(x), c),

Ly (I p(z),c) = LI, 7, ¢). (2)
In adversarial training, the quantum classifier is assumed to

be aware of the presence of the adversary, and is trained by
optimizing the adversarial training risk,

max
7:Dp (1,p(x)<e€)
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pe(ILT) = T Zﬁn (1L, p(xn), cn ),

n=1

the empirical average of the adversarial loss over the train-
ing set T = {(wn,cn)}E_, of ii.d tuples generated from
distribution P(z,c). The goal is to ensure that the adversar-
ially trained quantum classifier incurs minimum adversarial
population risk, Ly, ((I1) = Ep(y ¢)[lp.c(II, p(x),c)], on new,
previously unseen perturbed data. We define the adversarial
generalization error of the classifier IT € M as

Gpe(IL, T) = Lp,e(I1) = Ly (I, 7). €)

Characterizing the Adversarial Generalization Error: To
upper bound the adversarial generalization error in (3), we
use the classical uniform convergence result from statistical
learning theory. This gives that with probability at least 1 — 4,
for § € (0, 1), over random draws of the dataset, the following
inequality holds:

Gp. (I, T) < 2R, (M) + /21log(2/8)/T, where  (4)

Rp,e(M) = ETEs [supHGM % Z:Zl onlp.(IL, p(24), cn)]

is the adversarial Rademacher complexity with {o,}1_; de-
noting i.i.d Rademacher variables.

Assumption: The quantum embedding map =z — p(x)
is such that the minimum eigenvalue of p(z) satisfies
Amin(p(2)) = €.

Result 1: Adversarial Rademacher complexity of binary
classifiers is never smaller than in the non-adversarial setting.
Specifically, we have the following relationship

R(M) < Ry (M) < R(M) +/2/Ted /7. (5)

where R(M) = R, o(M) is the non-adversarial Rademacher
complexity and d denotes the dimension of the Hilbert space.
Furthermore, contrary to the classical setting, the dimensional
dependence of the upper bound (5) is a consequence of the
choice of attack. In particular, only for p = 1 attack, the bound
is independent of the dimension d.

Result 2: Adversarial generalization error of K-class clas-
sifiers scale as O (/K /T (V212(X:Q) yed'=1/P)). Speciﬁcally,

the following inequality holds with probability at least 1 —

Gp. (I, T) ,/f2szQ +2\/ ed'~ 1/P+\/ log(2/4)

where I3(X : Q) = log, (Tr Y. Plx)p(x )2) is the 2-
Rényi mutual information between the subsystems ) and X
of the classical-quantum state pcxq = >, P(x, ¢)|cz)(cz|®
p(x). The first term corresponds an upper bound on the non-
adversarial Rademacher complexity, which is improved by a
factor of 2 over previous works.



