

Exploring Quantum Generative Models: A Benchmark Analysis

QC-GAN [8]

Q-Dense [9]

Natalia Muñoz Moruno¹, Artur Garcia-Saez² and Miguel A. González Ballester^{1,2,3}

Open-Source-Repository-for-Evaluating-Quantum-Image-Generative-Models

<text><text><image>

BRATS BloodMNIS 64x64									https://github.com/nmunoz317/Open-Source- Repository-for-Evaluating-Quantum-Image- Generative-Models.git
BRATS 128x128	Image: second							QC-GAN QC-GAN Classical contribution QC-GAN classical contribution	
			Patch GAN	PQWGAN	QC-GAN	Q-Dense	Q-Dense di		
	BloodMINST -		465.66	348.64	436.78	403.84	504.29		
		FID	2.44	318.78	407.63	9.58 390.88	9.29 396.53	• •	
	BraTS 64x65	PSNR	9.93	14.46	11.43	7.30	9.46		
	BraTS 128v129	FID	-	354.16	494.02	440.05	490.9		මෙසෙයිම මිමසයිම මමසයිම මමසයිම මිමසයිම විසිදු කරන්නු මිසිදුකරයි මිසිදුකරයි මිසිදුකරයි
		PSNR	-	16.11	8.93	6.62	9.45		

Q-Dense

directed [9]

the dealers

CONCLUSIONS

Patch GAN [6]

F

PQWGAN [7]

Increasing image resolution and using more complex distributions present **challenges for quantum generative models**. However, it is important to emphasize that benchmarking requires **complex and extensive analysis**. Therefore, expanding the range of explored parameters is recommended to further the understanding of the current state of the art. An **open-source repository** has been provided to encourage community involvement and enhance the benchmarking process.

REFERENCES

- [1] J. Yang et al. "MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classification." Scientific Data, 2023.
- [2] J. Yang et al. "MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis". IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021.
- [3] U.Baid, et al., "The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification", arXiv:2107.02314, 2021
- [4] B. H. Menze et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694
- [5] S. Bakas et al., "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017)
- [6] H. L. Huang et al. (2021). Experimental quantum generative adversarial networks for image generation. Physical Review Applied, 16(2), 024051.
- [7] S. L Tsang et al. (2023). Hybrid quantum-classical generative adversarial network for high resolution image generation. IEEE Transactions on Quantum Engineering.
- [8] Shu, R., Xu, X., Yung, M. H., & Cui, W. (2024). Variational Quantum Circuits Enhanced Generative Adversarial Network. arXiv preprint arXiv:2402.01791.
- [9] Kölle, M., Stenzel, G., Stein, J., Zielinski, S., Ommer, B., & Linnhoff-Popien, C. (2024). Quantum Denoising Diffusion Models. arXiv preprint arXiv:2401.07049.