
Quantum signal processing without angle finding
Abhijeet Alase

Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Australia

Abstract

Quantum signal processing (QSP) refers to the task of implementing a given function f on a quantum signal, which typically corresponds to the
eigenvalues of an input Hermitian matrix H . QSP is employed in many modern fault-tolerant quantum algorithms, including those for Hamiltonian
simulation, matrix inversion, solving differential equations and optimization. The quantum circuits proposed in the literature for implementing QSP
for a polynomial function have optimal size. However, given a general function, computing the description of a circuit that implements a polynomial
approximation of the function with optimal error scaling requires calculation of certain rotation angles on a classical computer, which limits the
overall complexity of QSP. In this work, we use ideas from the theory of interpolating polynomials to construct a simple circuit for implementing
QSP without angle finding. This circuit enables implementation of QSP for any continuous black-box function f with nearly optimal complexity,
including the classical operations required for computing a description of the circuit.

Background: Quantum signal processing

• Given a degree-d real polynomial p(x) with ∥p(x)∥∞ := max[−1,1] |p(x)| ≤ 1/2, a set
of angles Φ = (ϕ1, ϕ2, . . . , ϕd) can be calculated such that [1, 2]

p(x) = . . .⟨0| exp(iϕ1Z) Wx exp(iϕ2Z) Wx exp(iϕdZ) Wx |0⟩
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is the parametrized quantum walk unitary.

• Deterministic angle-finding algorithms for a given polynomial have complexity scal-
ing as O(d2) or worse [2].

• For implementing a degree-d approximation of f : [−1, 1] → C, we minimize with
respect to a cost function [3, 4], e.g.

min
Φ

∥f − pΦ∥∞ s.t. Φ ∈ [−π, π)d.

The complexity of this optimization for a general f is unknown.

• Suppose an (n + a)-qubit block encoding of an n-qubit Hamiltonian H is given. To
obtain a circuit for the block encoding of p(H), we replace each Wx by (2Π− 1)UH,
where Π = |0a⟩ ⟨0a| ⊗ 1.

New polynomial approximation

The key tool in our work is a new polynomial approximation that is easy to compute
and has the same error scaling as the best polynomial approximation.

Lemma: For f : [−1, 1] → C and d ∈ Z+, define fd : [−1, 1] → C as
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where {Tj} denote Cheyshev polynomials of the first kind. Then

∥f − fd∥∞ ≤ (1 +
√
2)Ed(f ),

where Ed(f ) := ∥f − fd,∗∥∞ and fd,∗ is the best polynomial approximation of degree d
for f in ∥·∥∞ norm.

Remark: fd is a polynomial of degree at most 3d− 1.
Remark: If f is a degree-d polynomial, then fd = f .
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Theorem: Given an oracle Of for a function f : [−1, 1] → C with ∥f∥∞ ≤ 1 and an (n + a)-qubit block encoding UH for an n-qubit Hamiltonian H , a block encoding Uf (H) of
f (H)/

√
2 to accuracy (1 +

√
2)Ed(f ) + ϵ can be constructed using O(d) queries to UH, two queries to Of , and O (a, polylog(d, 1/ϵ)) additional two-qubit gates. Moreover, a circuit

description for implementing Uf (H) can be computed in polylog (d, 1/ϵ) time on a classical computer.

Proof: We first construct a circuit to implement fd(x):
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Figure: Circuit diagram for black-box QSP acting on 1 signal qubit (the top wire) and 3 + ⌈log2(d)⌉ ancilla qubits (here d = 4).

Here Uf has action Uf |j⟩ |0⟩ = |j⟩
(
f (xj) |0⟩ +

√
1− |f (xj)|2 |1⟩

)
and can be implemented using two queries to Of . A circuit for Uf (H) is obtained by Wx 7→ (2Π− 1)UH.

Remark: The circuit for implementing fd(x) is remarkably similar to that for function implementation based on quantum phase estimation, but it is exact for degree-d polynomials.

Summary and discussion

• Constructed a polynomial approximation that is easy to implement and has the same scaling behavior for the approximation error as the best polynomial approximation.

• Designed an efficient circuit for QSP with respect to a black-box functions. Applies to known problems such as Hamiltonian simulation (f (x) = eitx), matrix inversion (f (x) = 1/x),
time-independent linear differential equation solver (f1(x) = eitx, f2(x) = (1− eitx)/x) etc.

• Achieves nearly optimal total complexity including classical operations if f is continuous with Lipschitz constant in O(1).

Algorithm Queries to Of Queries to UH Classical operations Error
Remez exchange + Deterministic angle finding ∞ O(d) O(d2) Ed(f )

Chebyshev truncation + Deterministic angle finding poly(1/ϵ) O(d) O(d2) Õ(Ed(f ))

Chebyshev interpolation + Deterministic angle finding O(d) O(d) O(d2) Õ(Ed(f ) + ϵ)

Chebyshev truncation + Optimization d O(d) Unknown Õ(Ed(f ))

This work 2 O(d) polylog(d, 1/ϵ) (1 +
√
2)Ed(f ) + ϵ
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