THE UNIVERSITY OF SYDNEY

Quantum signal processing without angle finding

Abhijeet Alase

Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Australia

Abstract

Quantum signal processing (QSP) refers to the task of implementing a given function f on a quantum signal, which typically corresponds to the eigenvalues of an input Hermitian matrix H. QSP is employed in many modern fault-tolerant quantum algorithms, including those for Hamiltonian simulation, matrix inversion, solving differential equations and optimization. The quantum circuits proposed in the literature for implementing QSP for a polynomial function have optimal size. However, given a general function, computing the description of a circuit that implements a polynomial approximation of the function with optimal error scaling requires calculation of certain rotation angles on a classical computer, which limits the overall complexity of QSP. In this work, we use ideas from the theory of interpolating polynomials to construct a simple circuit for implementing QSP without angle finding. This circuit enables implementation of QSP for any continuous black-box function f with nearly optimal complexity, including the classical operations required for computing a description of the circuit.

Background: Quantum signal processing

• Given a degree-d real polynomial p(x) with $||p(x)||_{\infty} := \max_{[-1,1]} |p(x)| \le 1/2$, a set

New polynomial approximation

The key tool in our work is a new polynomial approximation that is easy to compute

of angles $\Phi = (\phi_1, \phi_2, \dots, \phi_d)$ can be calculated such that [1, 2]

$$p(x) = \langle 0 | - \exp(i\phi_1 Z) - W_x - \exp(i\phi_2 Z) - \cdots - W_x - \exp(i\phi_d Z) - W_x - | 0 \rangle$$

Here $W_x = \begin{bmatrix} x & i\sqrt{1-x^2} \\ i\sqrt{1-x^2} & x \end{bmatrix}$ is the parametrized quantum walk unitary.

- Deterministic angle-finding algorithms for a given polynomial have complexity scaling as $O(d^2)$ or worse [2].
- For implementing a degree-d approximation of $f : [-1,1] \to \mathbb{C}$, we minimize with respect to a cost function [3, 4], e.g.

 $\min_{\Phi} \|f - p_{\Phi}\|_{\infty} \quad \text{s.t.} \quad \Phi \in [-\pi, \pi)^d.$

The complexity of this optimization for a general f is unknown.

• Suppose an (n + a)-qubit block encoding of an *n*-qubit Hamiltonian *H* is given. To obtain a circuit for the block encoding of p(H), we replace each W_x by $(2\Pi - \mathbb{1})U_H$, where $\Pi = |0^a\rangle \langle 0^a| \otimes \mathbb{1}$.

and has the same error scaling as the best polynomial approximation.

Lemma: For $f : [-1, 1] \to \mathbb{C}$ and $d \in \mathbb{Z}^+$, define $f_d : [-1, 1] \to \mathbb{C}$ as

$$f_d(x) = \frac{1}{8d^2} \sum_{j'=d}^{3d-1} \sum_{j,k=0}^{4d-1} f(x_k) \exp\left(\frac{i\pi k(j'-j)}{2d}\right) T_{|j-j'|}(x), \quad x_k = \cos\left(\frac{\pi k}{2d}\right),$$

where $\{T_j\}$ denote Cheyshev polynomials of the first kind. Then

 $\|f - f_d\|_{\infty} \le (1 + \sqrt{2})E_d(f),$

where $E_d(f) := ||f - f_{d,*}||_{\infty}$ and $f_{d,*}$ is the best polynomial approximation of degree d for f in $|| \cdot ||_{\infty}$ norm.

Remark: f_d is a polynomial of degree at most 3d - 1. **Remark:** If f is a degree-d polynomial, then $f_d = f$.

Quantum signal processing for black-box functions without angle-finding

Theorem: Given an oracle O_f for a function $f : [-1,1] \to \mathbb{C}$ with $||f||_{\infty} \leq 1$ and an (n+a)-qubit block encoding U_H for an *n*-qubit Hamiltonian *H*, a block encoding $U_{f(H)}$ of $f(H)/\sqrt{2}$ to accuracy $(1+\sqrt{2})E_d(f) + \epsilon$ can be constructed using O(d) queries to U_H , two queries to O_f , and $O(a, \text{polylog}(d, 1/\epsilon))$ additional two-qubit gates. Moreover, a circuit description for implementing $U_{f(H)}$ can be computed in polylog $(d, 1/\epsilon)$ time on a classical computer.

Proof: We first construct a circuit to implement $f_d(x)$:

Summary and discussion

- Constructed a polynomial approximation that is easy to implement and has the same scaling behavior for the approximation error as the best polynomial approximation.
- Designed an efficient circuit for QSP with respect to a black-box functions. Applies to known problems such as Hamiltonian simulation ($f(x) = e^{itx}$), matrix inversion (f(x) = 1/x), time-independent linear differential equation solver ($f_1(x) = e^{itx}$, $f_2(x) = (1 e^{itx})/x$) etc.
- Achieves nearly optimal total complexity *including classical operations* if f is continuous with Lipschitz constant in O(1).

Algorithm	Queries to O_f	Queries to U_H	Classical operations	Error
Remez exchange + Deterministic angle finding	∞	$\mathbf{O}(d)$	$\mathbf{O}(d^2)$	$E_d(f)$
Chebyshev truncation + Deterministic angle finding	$\operatorname{poly}(1/\epsilon)$	$\mathbf{O}(d)$	$\mathbf{O}(d^2)$	$ ilde{\mathbf{O}}(E_d(f))$
Chebyshev interpolation + Deterministic angle finding	$\mathbf{O}(d)$	$\mathbf{O}(d)$	$\mathbf{O}(d^2)$	$\tilde{\mathbf{O}}(E_d(f) + \epsilon)$
Chebyshev truncation + Optimization	d	$\mathbf{O}(d)$	Unknown	$ ilde{\mathbf{O}}(E_d(f))$
This work	2	O (<i>d</i>)	$polylog(d, 1/\epsilon)$	$(1+\sqrt{2})E_d(f) + \epsilon$

References

[1] G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501 (2017).

[2] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Proc. Annu. ACM Symp. Theory Comput. 51, 193 (2019). arXiv: 1806.01838.

[3] R. Chao, D. Ding, A. Gilyén, C. Huang, and M. Szegedy, arXiv:2003.02831 (2020).

[4] D. Motlagh and N. Wiebe, PRX Quantum 5, 020368 (2024).