2D and 3D Representation Learning on Gate-based Quantum Computers
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This abstract is based on a work in progress that intro-
duces a new type of neural field for visual computing with
components compatible with gate-based quantum hardware
or simulators thereof. We propose a Quantum Neural Field
Network (QNF-Net) expecting as input a query coordinate
(of different dimensionality depending on the problem) and,
optionally, a latent variable value. It outputs the correspond-
ing learnt signal. QNF-Net includes a classical feature map
providing quantum encoding of classical data and a quan-
tum ansatz with parametrised quantum circuits.

The main figure at the top of the page provides an
overview of the proposed QNF-Net. The scene coordinates
6 encoded using -y (positional encoding) concatenated with
the conditioning latent code z are used to infer the energy
spectrum E of a quantum system, associated with statisti-
cal uncertainty P modelled by, e.g., Boltzmann distribution
o. This inferred statistical property is then processed by
a parametrised quantum circuitry S(6) followed by qubit
measurements. The measured values are grouped using the
parity mapper to ensure consistent output dimensions.

Main Results and Implementation

We implement and test the proposed method using a high-
level quantum simulator with the Pytorch interface provided
in Pennylane [Bergholm et al., 2018]. We evaluate our
approach for the representational accuracy of neural fields
across varying data dimensions (2D and 3D). Due to the in-
herent computational and memory demands associated with
the training of parametrised quantum circuits, we choose
compact and representative data collections from CIFAR-10
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Figure 1. Visualisation of the reconstructed results for a puppy
image field with increasing training epochs; mean PSNR values
are provided in the brackets. Our approach (top) captures high-
frequency information faster than the classical MLP (bottom).

[Krizhevsky and Hinton, 2009] and ShapeNet [Chang,
2015] datasets, among others.

We observe in scenarios with 2D and 3D data that the
QNF-Net trained on a simulator allows us to improve both
the convergence speed (see Fig. 1) and the representational
accuracy (the PSNR metric emphasising high-frequency de-
tails) compared to strong classical MLP baselines. We ex-
periment with learning 2D images of different resolutions,
signed distance fields of 3D shapes as well as their collec-
tions (as learnt priors), and observe that QNF-Net substan-
tially outperforms the classical baselines using several met-
rics for a comparable number of parameters in the evalu-
ated architectures. Moreover, QNF-Net enables such appli-
cations as image or shape completion and interpolation.

In a broader sense, we practically demonstrate in a sim-
ulation the theoretically postulated advantages of quantum
machine learning in the context of neural fields.
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