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Quantum machine learning is an emerging branch that combines principles of quantum comput-
ing and machine learning, with the goal of developing algorithms that take advantage of the unique
properties of quantum systems. Among these properties are entanglement, superposition, interference
and tunneling , which can potentially speed up certain computations and allow the handling of data
on scales that would be unattainable for classical algorithms. One of the most promising quantum
machine learning architectures is the Quantum Boltzmann Machine (QBM)[1]. The QBM is an exten-
sion of the Classical Boltzmann Machine (CBM), which is a stochastic neural network model used to
model complex probability distributions. While the CBM uses thermal fluctuations to explore state
configurations, the QBM uses Thermal and Quantum fluctuations, which opens up new possibilities
for state exploration and optimization of objective functions in high-dimensional spaces.

The study of the phase diagram of a neural network, whether classical or quantum, is crucial to
understand the dynamics of the system under different conditions, optimize the network parameters
to improve its performance and stability, predict how the network will respond to changes in external
or internal conditions, and compare classical and quantum approaches. The learning phase is typically
found at the transition between ordered and disordered phases[2], where the network can better explore
and generalize real world data configurations. In this transition region, the system is flexible enough
to adjust to new data configurations (disordered phase) while maintaining sufficient structure not to
over fit (ordered phase).

In this study, we analyzed the phase diagram at the zero temperature limit (T = 0 K) for a
Quantum Boltzmann Machine. Using the Suzuki-Trotter decomposition, we transformed the quantum
Hamiltonian into a classical effective Hamiltonian. With the classical Hamiltonian at hand we use
the replica formalism with the semiclassical and static approximations (in the Trotter direction) to
analytically derive the order parameter equations in order to study the properties of the system.

We found that, in the absence of an external field, the behavior of the QBM(in the Semi classi-
cal approximation) mirrors that of the Classical Boltzmann Machine, but with quantum fluctuations
playing a role analogous of thermal fluctuations. In addition, we perform an analysis of the stability
of the solutions, observing a restoration of the replica symmetry, whose effect may be due to quan-
tum tunneling between the “trapped” states, separated by infinitely high barriers in the free energy
landscape[3]. In the thermodynamic limit, we also know that these barriers become much narrow as
the system grows, since we have a finite area where tunneling is possible.
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