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In this work, we propose a quantum realization
for power iterations–a well known classical optimiza-
tion algorithm. Considering low-rank tensor network
representations, such as Matrix Product Operators
(MPO) for arbitrary matrices, we provide a systematic
approach by which one can perform power iterations
on a quantum computer. Specifically, our methodology
involves variaitonally tuning an MPO ansatz; wherein
the indexed matrices (or tensor cores) are constrained
to be unitary, to approximate a given target MPO. Such
unitary MPOs can easily be implemented as a quantum
circuit with the addition of ancillary qubits. Thereafter,
with appropriate initialization and post-selection on the
ancillary space, we realize a single iteration (and any
subsequent iterations) of the classical algorithm on a
quantum computer. Our approach therefore features a
run-time advantage when compared to tensor network
variants of power iterations. Moreover, by exploiting
Riemannian optimization and cross-approximation
techniques, our methodology becomes instance agnostic
and thus allows for addressing black-box optimization
within the framework of quantum computing.

Background: Consider the following setting, let
f(x) represent some real-valued function we wish to
maximize over an input domain, x ∈ [a, b]. Given
access to n qubits, one can exploit 2n discretization
points to amplitude encode f(x) into a quantum
state, |f⟩ =

∑2n−1
k=0 f(xk) |k⟩. Here xk represents

discetized inputs and {|k⟩}2
n−1

k=0 is the computational
basis. The optimization problem now becomes,
max
k

f(xk) ≡ max
k

pk, where pk = |⟨k|f⟩|2 are the

measurement probabilities of state |f⟩ with respect to
projections onto the computational basis. Therefore, if
one could prepare such a state, measuring it would allow
for recovering a candidate optima. Power iterations
simply improve on this idea by considering powers of
f(x) via: ∣∣∣f (j+1)

〉
=

Hj |f⟩
∥Hj |f⟩∥

, (1)

where, H =
∑2n−1

k=0 f(xk) |k⟩⟨k| and ∥·∥ is the 2-norm.
Ideally, as j → ∞, the resultant state becomes |k∗⟩,
where k∗ = arg max

k
pk, is the optimum.

Quantum Power Iterations: In order to pre-
pare |f⟩ and subsequently the powers:

∣∣f (j)
〉
, on a

quantum computer, we start by considering a r-rank
MPO representation for the diagonal matrix H as in

Eq. (1):

Hmpo =
∑
K

[
A(1)

k1A
(2)

k2 · · ·A(n)
kn

]
|K⟩⟨K| . (2)

Here, max
j

rank
(
A(j)

kj

)
≤ r. Such representations

can be obtained efficiently by employing matrix cross-
approximation techniques. Next, we approximate this
target MPO via a unitary MPO of ranks R ≥ r. To do
this, we consider the following variational minimization:

(c∗,Umpo) ∈ arg min
c∈R
U∈Ω

∥∥∥c · Ũ−Hmpo

∥∥∥2
F
, (3)

where Ω is the space of MPOs for which the indexed
matrices (as in Eq. (2)), satisfy unitarity. This opti-
mal Umpo can straightforwardly be implemented as a
quantum circuit with log (R) ancillary qubits. With the

input state,
(
|0⟩⊗ log(R) ⊗ |+⟩⊗n

)
, and performing post-

selection, one can prepare |f⟩. Subsequent powers can
then be addressed by simply concatenating multiple cir-
cuit blocks. In Fig. 1, we perform a noiseless simulation
of our approach to recover the function landscape for
the two-dimensional Rosenbrock function.
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Figure 1: Quantum power iterations for the two-dimensional
Rosenbrock function. The left panels indicate the powers of
the exact function, f j (xk, yk) , j ∈ {5, 30}, and the right
panels indicate the measurement probabilities obtained via
simulations. With increasing powers, we observe that the
banana valley is faithfully reproduced.


