Tensor networks based quantum optimization algorithm
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In this work, we propose a quantum realization
for power iterations—a well known classical optimiza-
tion algorithm. Considering low-rank tensor network
representations, such as Matriz Product Operators
(MPO) for arbitrary matrices, we provide a systematic
approach by which one can perform power iterations
on a quantum computer. Specifically, our methodology
involves variaitonally tuning an MPO ansatz; wherein
the indexed matrices (or tensor cores) are constrained
to be unitary, to approximate a given target MPO. Such
unitary MPOs can easily be implemented as a quantum
circuit with the addition of ancillary qubits. Thereafter,
with appropriate initialization and post-selection on the
ancillary space, we realize a single iteration (and any
subsequent iterations) of the classical algorithm on a
quantum computer. Our approach therefore features a
run-time advantage when compared to tensor network
variants of power iterations. Moreover, by exploiting
Riemannian  optimization and
techniques, our methodology becomes instance agnostic
and thus allows for addressing black-box optimization
within the framework of quantum computing.

cross-approximation

Background: Consider the following setting, let
f(x) represent some real-valued function we wish to
maximize over an input domain, x € [a,b]. Given
access to n qubits, one can exploit 2™ discretization
points to amplitude encode f(z) into a quantum
state, |f) = 22 oL f(z) |k).  Here x;, represents
discetized inputs and {|E)}3 _1 is the computational
basis. The opt1mlzat10n problem now becomes,
m’?xf(a:k) = maxpy, where p, = [(k|f)|? are the

measurement probabilities of state |f) with respect to
projections onto the computational basis. Therefore, if
one could prepare such a state, measuring it would allow
for recovering a candidate optima. Power iterations
simply improve on this idea by considering powers of

f(zx) via:
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where, H = Z2n Y f(xr) |kXE| and ||| is the 2-norm.
Ideally, as 7 — oo, the resultant state becomes |k*),
where k* = arg m]?x Pk, is the optimum.

Quantum Power Iterations: In order to pre-
pare |f) and subsequently the powers: | f(j)>, on a
quantum computer, we start by considering a r-rank
MPO representation for the diagonal matrix H as in

Eq. (1):
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Here, max rank (A(j)k].) < 7. Such representations
J

can be obtained efficiently by employing matrix cross-
approximation techniques. Next, we approximate this
target MPO via a unitary MPO of ranks R > r. To do
this, we consider the following variational minimization:

- 2
(c*, Unmpo) € arg min Hc U —Hupo|| ., (3)
Uen

where 2 is the space of MPOs for which the indexed
matrices (as in Eq. (2)), satisfy unitarity. This opti-
mal Upp, can straightforwardly be implemented as a
quantum circuit with log (R) ancillary qubits. With the
’0>®10g(R) ® |_|_>®n
selection, one can prepare |f). Subsequent powers can
then be addressed by simply concatenating multiple cir-
cuit blocks. In Fig. 1, we perform a noiseless simulation
of our approach to recover the function landscape for
the two-dimensional Rosenbrock function.
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Figure 1: Quantum power iterations for the two-dimensional
Rosenbrock function. The left panels indicate the powers of
the exact function, f7 (zg,yr), 7 € {5,30}, and the right
panels indicate the measurement probabilities obtained via
simulations. With increasing powers, we observe that the
banana valley is faithfully reproduced.




