Tensor networks based quantum optimization algorithm

V. Akshay^{*,1}, Ar. Melnikov¹, A. Termanova¹ and M. R. Perelshtein¹

[∗]Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore 639673.

 1 Terra Quantum AG, Kornhausstrasse 25, 9000 St. Gallen, Switzerland.

e-mail: vishwanathan.akshay@gmail.com

In this work, we propose a quantum realization Eq. (1): for power iterations–a well known classical optimization algorithm. Considering low-rank tensor network representations, such as Matrix Product Operators (MPO) for arbitrary matrices, we provide a systematic approach by which one can perform power iterations on a quantum computer. Specifically, our methodology involves variaitonally tuning an MPO ansatz; wherein the indexed matrices (or tensor cores) are constrained to be unitary, to approximate a given target MPO. Such unitary MPOs can easily be implemented as a quantum circuit with the addition of ancillary qubits. Thereafter, with appropriate initialization and post-selection on the ancillary space, we realize a single iteration (and any subsequent iterations) of the classical algorithm on a quantum computer. Our approach therefore features a run-time advantage when compared to tensor network variants of power iterations. Moreover, by exploiting Riemannian optimization and cross-approximation techniques, our methodology becomes instance agnostic and thus allows for addressing black-box optimization within the framework of quantum computing.

Background: Consider the following setting, let $f(x)$ represent some real-valued function we wish to maximize over an input domain, $x \in [a, b]$. Given access to n qubits, one can exploit 2^n discretization points to amplitude encode $f(x)$ into a quantum state, $|f\rangle = \sum_{k=0}^{2^n-1} f(x_k) |k\rangle$. Here x_k represents discetized inputs and $\{|k\rangle\}_{k=0}^{2^n-1}$ is the computational basis. The optimization problem now becomes, $\max_{k} f(x_k) \equiv \max_{k} p_k$, where $p_k = |\langle k|f \rangle|^2$ are the measurement probabilities of state $|f\rangle$ with respect to projections onto the computational basis. Therefore, if one could prepare such a state, measuring it would allow for recovering a candidate optima. Power iterations simply improve on this idea by considering powers of $f(x)$ via:

$$
\left| f^{(j+1)} \right\rangle = \frac{\mathrm{H}^j \left| f \right\rangle}{\left\| \mathrm{H}^j \left| f \right\rangle \right\|},\tag{1}
$$

where, $H = \sum_{k=0}^{2^n - 1} f(x_k) |k\rangle\langle k|$ and $||\cdot||$ is the 2-norm. Ideally, as $j \to \infty$, the resultant state becomes $|k^*\rangle$, where $k^* = \arg \max_k p_k$, is the optimum.

Quantum Power Iterations: In order to prepare $|f\rangle$ and subsequently the powers: $|f^{(j)}\rangle$, on a quantum computer, we start by considering a r -rank MPO representation for the diagonal matrix H as in

$$
H_{\text{mpo}} = \sum_{\boldsymbol{K}} \left[A^{(1)}_{k_1} A^{(2)}_{k_2} \cdots A^{(n)}_{k_n} \right] |\boldsymbol{K} \rangle \langle \boldsymbol{K}|. \tag{2}
$$

Here, max rank $(A^{(j)}_{k_j}) \leq r$. Such representations can be obtained efficiently by employing matrix crossapproximation techniques. Next, we approximate this target MPO via a unitary MPO of ranks $R \geq r$. To do this, we consider the following variational minimization:

$$
(c^*, \mathbf{U}_{\text{mpo}}) \in \arg\min_{\substack{c \in \mathbb{R} \\ \mathbf{U} \in \Omega}} \left\| c \cdot \tilde{\mathbf{U}} - \mathbf{H}_{\text{mpo}} \right\|_F^2, \tag{3}
$$

where Ω is the space of MPOs for which the indexed matrices (as in Eq. (2)), satisfy unitarity. This optimal $U_{\rm{mno}}$ can straightforwardly be implemented as a quantum circuit with $log(R)$ ancillary qubits. With the input state, $(|0\rangle^{\otimes \log(R)} \otimes |+\rangle^{\otimes n})$, and performing postselection, one can prepare $|f\rangle$. Subsequent powers can then be addressed by simply concatenating multiple circuit blocks. In Fig. 1, we perform a noiseless simulation of our approach to recover the function landscape for the two-dimensional Rosenbrock function.

Figure 1: Quantum power iterations for the two-dimensional Rosenbrock function. The left panels indicate the powers of the exact function, $f^j(x_k, y_k)$, $j \in \{5, 30\}$, and the right panels indicate the measurement probabilities obtained via simulations. With increasing powers, we observe that the banana valley is faithfully reproduced.