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Abstract

Noise in quantum devices challenges implementation of quantum algorithms. Our study fo-
cuses on noisy trapped-ion quantum computers, addressing the errors arising from residual
entanglement between electronic and motional levels. We introduce a variational quan-
tum state preparation algorithm for non-ideal ionic quantum computers, achieving in our
numerical experiments fidelities in preparing GHZ states with 3-5 qubits up to 0.99. Ad-
ditionally, we propose a solution to optimize the hardware requirements for mixed-state
preparation on ion quantum computers, using platform-specific motional modes as a useful
computational resource.

Noisy trapped-ion quantum computers

The trapped ions platform is currently one of the leading platforms for quantum computing
owing to their long coherence times, all-to-all connectivity, and availability of the required
technologies.
Each ion in such setups is treated as a qubit, with the logical levels of the qubit encoded
in the electronic states of the ion. Using suitable laser pulses, a universal set of gates can
be performed. In particular, we use a set of gates consisting of ideal single-qubit rotations
Rx and Rz given in (1) and (2) respectively and realistic entangling Molmer-Sorensen (MS)
gate provided in equations (3), (4) and (5).
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Here, Ω is Rabi frequency, ∆ = ω − ω0 is the detuning of the laser frequency ω from the
frequency of transition ω0 between states |0⟩ and |1⟩; σx and σz are the Pauli operators.
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where
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Here, t0 is the initial time, Ωp is Rabi frequency for the p-th ion, σxp is the Pauli-X operator
acting on the p-th qubit, a†m and am are the creation and annihilation operators respectively
of mode m, νm is a frequency of m-th motional mode, ηmp is the Lamb-Dicke parameter
associated with m-th motional mode and ion p-th ion.

Variational state preparation

Given a target n-qubit pure state |t⟩ and an ansatz V (θ) we find a set of parameters θ⋆

such that |ψ(θ⋆)⟩ = V (θ⋆) |0n⟩ approximates |t⟩. The cost function here is simply given
by expectation value of the following Hamiltonian (6).

H = (1− |t⟩⟨t|)⊗ 1 (6)

where 1 is an operator that acts trivially on the infinite dimensional Hilbert space corre-
sponding to the motional degrees of freedom (H∞)⊗M and M is the number of motional
modes considered. Clearly the states minimizing H are of the form |t⟩ ⊗ |φ⟩, where
|φ⟩ ∈ (H∞)⊗M . Taking a partial trace of this state over (H∞)⊗M gives us our desired
target state.
For mixed state preparation we minimize the Hilbert-Schmidt distance HS(ρt, ρp) defined
in (7) between target mixed state ρt and a state ρp prepared in a register.

HS(ρt, ρp) =
√

Tr(ρt − ρp)2 (7)

Ansatz

The variational circuit V (θ) is composed of p layers of checkerboard ansatz shown in Fig.1.
For each block in the ansatz, we have 7 variational parameters consisting of 4 angles for
each single-qubit rotation and 3 laser pulse parameters for the MS gate: the duration of
the pulse t− t0, the detunig of the laser ∆ and the Rabi frequency Ω. We assume that the
Rabi frequency is constant during the laser pulse.
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Fig. 1: Left: The checkerboard ansatz for n = 5. It is built of identical blocks arranged in
a checkerboard pattern. Right: Structure of each block in the checkerboard ansatz.

Pure state preparation

For the sake of numerical simulation we approximate the infinite dimensional Hilbert
space that V (θ) acts on (i.e. (C2)

⊗n × (H∞)⊗M), by a finite dimensional Hilbert space
(C2)

⊗n× (HN)⊗M . Then we obtain the minimum number of layers required for successful
state preparation a.k.a. the critical depth p∗. We deem our variational state preparation
algorithm to be successful if we achieve 1 − |⟨t|ψp(θ)⟩|2 ≤ 10−1. The Tab. 1 shows the
results for GHZ state preparation considering single M = 1 center-of-mass (COM) mode.

n p∗ Nmin 1− |⟨t|ψ(θ)⟩|2
3 3 16 0.07

4 3 32 0.03

5 4 32 0.01

Tab. 1: Summary of GHZ state preparation for n = 3, 4, 5 qubits and COM mode. Nmin

is the minimum number of motional levels that were required in numerical experiments.

We can further improve the performance of our algorithm with introduction of additional
layers. In fact we can achieve 1 − |⟨t|ψp(θ)⟩|2 ≤ 10−2 with p = 4, 4, 6 for n = 3, 4, 5
respectively.

Mixed state preparation

We demonstrate that it is possible to prepare mixed states in a register without the use
of ancilla qubits, exploiting the entanglement between the electronic and motional subsys-
tems. In numerical experiments, mixed states were prepared for 2 qubits that differed from
the target mixed states in terms of the Hilbert-Schmidt distance by no more than 0.01.
The example of a prepared state is shown in Fig. 2.
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Fig. 2: Real and imaginary components of target ρt and prepared ρp density matrices on
n = 2 qubits for single M = 1 COM mode approximated with N = 16 motional levels,

p = 6, the optimized Hilbert-Schmidt distance HS(ρt, ρp) = 0.009
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