Randomized estimators of the Hafnian of a non-negative matrix

Alexey Uvarov', Dmitry Vinichenko?

e Gaussian Boson Sampling effectively samples
submatrices of a given matrix according to
their Hatnians

e Calculating the Hainian is #P-hard, but there
are probabilistic estimators for non-negative
matrices

e Depending on statistical properties, these
estimators could “dequantize” some proposed
applicaitons of GBS

Gaussian Boson Sampling

A perfect Gaussian boson sampler with M modes
is specified by m squeeze parameters r; € R and
the interferometer unitary U € U(M). The kernel
matrix A is then defined as A @ A*, where

A = Udiag(tanhr; ... tanhry)U'. (1)

A measurement outcome n = (nq,...,ny), where
n; Is the number of photons measured in mode j,
corresponds to a submatrix A, of A where j-th and
(j +m)-th row and column are taken n; times. The
probability of observing such an outcome is propor-
tional to

L Haf(Ay) 2)

ni!...ny!
Here the Hafnian function treats a matrix as an
adjacency matrix of a graph and counts its perfect
matchings:

w(3)- 3 1+ X

For edge-weighted graphs, a perfect matching con-
tributes a product of its edge weights.

Denser graphs tend to have more perfect matchings,
so GBS can be used as a heuristic to find cliques in
a graph.
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Randomized estimators

Assuming that A € R?™*?™ {5 a non-negative ma-
trix (i.e. all a;; > 0), we can construct an estima-

tor of the Hafnian. Let W € R2™X2m L g ran-

dom skew-symmetric matrix such that Ew;; = 0,

ﬂng = 1, and all above-diagonal entries are i.i.d.

Define GG to be a matrix with g;; = w;;\/a;;. Then
. det G = Hatf A.

Here we look at two estimators:

e Barvinok estimator: w;; ~ N(0,1).
» Godsil-Gutman estimator: w;; € {—1,1},
sampled with equal probability.

Numerical results for
Erdos-Rényi graphs
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Figure 1:Relative deviation for the Barvinok estimator.
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Figure 2:Relative deviation for the Godsil-Gutman estimator.

Analytical results

The variance can be expressed in terms of perfect
2-matchings, i.e. spanning subgraphs such that all
connected components are either cycles or isolated

edges:
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Figure 3:Examples of perfect 2-matchings. The one on the

bottom right contains cycles of odd length; such 2-matchings

do not contribute to the variance.

Proposition 1. Let 43w2-3j = 0, ‘waj =1. Then

*'3(det G)Q _ Z 77\maﬁgch(al)\6|Cycle(al)
d

{i,j}ematch(d)
{k,l}ed\match(d)

Here the sum 1is taken over all perfect 2-
macthings d that contain cycles of even length;
match(d) is the set of isolated edges in d; cycle(d)
s the set of even-length cycles in d.

For Barvinok estimator n = 3, while for Godsil-
Gutman estimator n = 1.

Proposition 2.

(Haf A)* = Z glevele(d) H a;ap. (3)
d

(4,j)Ematch(d)
(k,l)ed\match(d)

Theorem 1. Let A be the adjacency matriz of a
complete graph with 2m vertices. Then

7 det G?
(Haf A)?

= ame'T +O(1), m — oo (4)
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Special cases

A graph like this will require an exponential number
of samples to get the Hatnian with a constant accu-
racy:

Examples like this can be cracked with the FK'T
algorithm which calculates the Hatnian for planar
eraphs in polynomial time. However, adding a few
more edges to make the egraph non-planar will make
FK'T useless as well.

Conclusions

e We investigated the statistical properties of the
Hafnian estimators and found that the Hafnian of
a random graph is typically easy to estimate.

e We derived the expression for the estimator
variance in terms of perfect 2-matchings. The
Godsil-Gutman estimator always has a smaller
variance than the Barvinok estimator.

e We prove that both esimators demonstrate a
linear scaling of relative variance for for complete
eraphs.

Open question: is there a fully polynomial random-
ized approximation scheme (FPRAS) for the Haf-
nian? If yes, GBS experiments based on random
eraphs would be classically simulable.
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