Randomized estimators of the Hafnian of a non-negative matrix

Alexey Uvarov¹, Dmitry Vinichenko²

 1 University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4 2 Skolkovo Institute of Science and Technology, 30 bld. 1 Bolshoy boulevard, Moscow, Russia 121205

Motivation

A perfect Gaussian boson sampler with *M* modes is specified by *m* squeeze parameters $r_i \in \mathbb{R}$ and the interferometer unitary $U \in \mathcal{U}(M)$. The **kernel matrix** $\mathcal A$ is then defined as $A \oplus A^*$, where

- Gaussian Boson Sampling effectively samples submatrices of a given matrix according to their Hafnians
- Calculating the Hafnian is $\#P$ -hard, but there are probabilistic estimators for non-negative matrices
- Depending on statistical properties, these estimators could "dequantize" some proposed applicaitons of GBS

 $A = U \operatorname{diag}(\tanh r_1 \dots \tanh r_M) U^T.$ (1) A measurement outcome $\mathbf{n} = (n_1, ..., n_M)$, where n_j is the number of photons measured in mode j , corresponds to a submatrix *A***ⁿ** of A where *j*-th and $(j+m)$ -th row and column are taken n_j times. The probability of observing such an outcome is proportional to

Gaussian Boson Sampling

$$
P(\mathbf{n}) \propto \frac{1}{n_1! \dots n_M!} \operatorname{Haf}(\mathcal{A}_{\mathbf{n}}). \tag{2}
$$

Here the **Hafnian** function treats a matrix as an adjacency matrix of a graph and counts its **perfect matchings**:

$$
\mathrm{Haf}\left(\sum_{i=1}^{n}x_i-\sum_{i=1}^{n}x_i+\sum_{i=1}^{n}x_i\right)
$$

For edge-weighted graphs, a perfect matching contributes a product of its edge weights.

Denser graphs tend to have more perfect matchings, so GBS can be used as a heuristic to find cliques in a graph.

Randomized estimators

Assuming that $A \in \mathbb{R}^{2m \times 2m}$ is a non-negative matrix (i.e. all $a_{ij} \geq 0$), we can construct an estimator of the Hafnian. Let $W \in \mathbb{R}^{2m \times 2m}$ be a random skew-symmetric matrix such that $E w_{ij} = 0$, $E w_{ij}^2 = 1$, and all above-diagonal entries are i.i.d. $\lim_{i \to \infty} a_i$, and an above diagonal entries are mixed.
Define *G* to be a matrix with $g_{ij} = w_{ij} \sqrt{a_{ij}}$. Then $\mathbb{E} \det G = \text{Haf } A.$

> • We investigated the statistical properties of the Hafnian estimators and found that the Hafnian of a random graph is typically easy to estimate. •We derived the expression for the estimator

Here we look at two estimators:

- Barvinok estimator: $w_{ij} \sim \mathcal{N}(0, 1)$.
- **Godsil-Gutman estimator**: $w_{ij} \in \{-1, 1\}$,

sampled with equal probability.

Numerical results for Erdős-Rényi graphs

Figure 2:Relative deviation for the Godsil-Gutman estimator.

Analytical results

The variance can be expressed in terms of **perfect 2-matchings**, i.e. spanning subgraphs such that all connected components are either cycles or isolated edges:

Figure 3:Examples of perfect 2-matchings. The one on the bottom right contains cycles of odd length; such 2-matchings do not contribute to the variance.

Proposition 1. Let $\mathbb{E} w_{ij}^3 = 0$, $\mathbb{E} w_{ij}^4 = \eta$. Then $\mathbb{E}(\det G)^2 =$ \sum *d* $\eta^{|{\rm match}(d)|}$ 6 $|\text{cycle}(d)|$ \Box ${i,j}\in\text{match}(d)$ ${k,l} ∈ d\mathbf{d}$ $a_{ij}^2a_{kl}$.

Here the sum is taken over all perfect 2 macthings d that contain cycles of even length; $\mathbf{match}(d)$ *is the set of isolated edges in d;* $\mathbf{cycle}(d)$ *is the set of even-length cycles in d.*

For Barvinok estimator $\eta = 3$, while for Godsil-Gutman estimator $\eta = 1$.

Proposition 2.

$$
(\text{Haf } A)^2 = \sum_{d} 2^{|\text{cycle}(d)|} \prod_{\substack{(i,j) \in \text{match}(d) \\ (k,l) \in d \setminus \text{match}(d)}} a_{ij}^2 a_{kl}. \quad (3)
$$

Theorem 1. *Let A be the adjacency matrix of a complete graph with* 2*m vertices. Then*

 $\mathbb{E} \det G^2$ $(Haf A)^2$ = √ *πme η*−3 $2^{\degree} + O(1), m \rightarrow \infty.$ (4)

Special cases

A graph like this will require an exponential number of samples to get the Hafnian with a constant accu-

<u> Andrew Maria (1986)</u>

racy:

Examples like this can be cracked with the FKT algorithm which calculates the Hafnian for planar graphs in polynomial time. However, adding a few more edges to make the graph non-planar will make FKT useless as well.

Conclusions

variance in terms of perfect 2-matchings. The Godsil-Gutman estimator always has a smaller variance than the Barvinok estimator.

•We prove that both esimators demonstrate a linear scaling of relative variance for for complete

-
-
- graphs.

Open question: is there a fully polynomial randomized approximation scheme (FPRAS) for the Hafnian? If yes, GBS experiments based on random graphs would be classically simulable.

• alexejuv@gmail.com