
Representation Theory for Quantum Computing

Martin Larocca
Theoretical Division, Los Alamos National Laboratory

Los Alamos, New Mexico, USA

Tutorial1 at QTML 2024
23rd November 2024, Melbourne, Australia.

1Release #: LA-UR-24-32494.

Outline

Let’s accept it, there is no outline.

Let’s know in advance this will not be perfect.

But its the best we could do with what we have!

Hope you enjoy it!

Outline

Let’s accept it, there is no outline.

Let’s know in advance this will not be perfect.

But its the best we could do with what we have!

Hope you enjoy it!

Outline

Let’s accept it, there is no outline.

Let’s know in advance this will not be perfect.

But its the best we could do with what we have!

Hope you enjoy it!

What is a Quantum Computer?

A Quantum Computer (QC) is an (ideally, closed) many-body quantum system over
which we hypothetically have a remarkable amount of control – we can implement
arbitrary sequences of (polynomially-many) local operations.

We believe polynomial-sized quantum circuits to be strictly more powerful than
polynomial-sized classical circuits, and attend quantum computing conferences to
argue about potential quantum speedups and applications.

What is a Quantum Computer?

A Quantum Computer (QC) is an (ideally, closed) many-body quantum system over
which we hypothetically have a remarkable amount of control – we can implement
arbitrary sequences of (polynomially-many) local operations.

We believe polynomial-sized quantum circuits to be strictly more powerful than
polynomial-sized classical circuits, and attend quantum computing conferences to
argue about potential quantum speedups and applications.

Quantum Computing = Linear Algebra ?

Quantum states are vectors |ψ⟩ ∈ H = Cd with d = 2n, and quantum circuits are
d × d unitary matrices. Then

Is doing Quantum Computing just doing (high-dimensional) linear algebra?

Well, yes and no. In general, we dont care for all high-dimensional linear
transformations, but instead for certain very-structured subsets that arise from
non-linear-algebraic structures (groups, rings, algebras) embedded into linear
transformations.

Quantum Computing = Linear Algebra ?

Quantum states are vectors |ψ⟩ ∈ H = Cd with d = 2n, and quantum circuits are
d × d unitary matrices. Then

Is doing Quantum Computing just doing (high-dimensional) linear algebra?

Well, yes and no. In general, we dont care for all high-dimensional linear
transformations, but instead for certain very-structured subsets that arise from
non-linear-algebraic structures (groups, rings, algebras) embedded into linear
transformations.

What and Why’s of Rep Theory

Rep Theory Preliminaries: Groups

A group is a set G with an operation ◦G × G −→ G :

1. The set has an identity

2. Every element has an inverse

Given a set X , the symmetric group SX is the set of bijections from X to X . If
|X | = n there are n! bijections; we typically denote it Sn. For example,

S3 =
{

(), (12), (13), (23), (123), (132)
}
.

We use notation () = (1)(2)(3) or (12) = (12)(3) in which we omit one-cyles.

Check that S3 is a group:

Other examples of finite groups are the more general permutation groups, the
subgroups G ⊆ Sn. Examples include the alternating group An of even permutations,
or the cyclic group Zn = ⟨(12 · · · n)⟩ ⊂ Sn generated by an n-cycle.

Rep Theory Preliminaries: Groups

A group is a set G with an operation ◦G × G −→ G :

1. The set has an identity

2. Every element has an inverse

Given a set X , the symmetric group SX is the set of bijections from X to X . If
|X | = n there are n! bijections; we typically denote it Sn. For example,

S3 =
{

(), (12), (13), (23), (123), (132)
}
.

We use notation () = (1)(2)(3) or (12) = (12)(3) in which we omit one-cyles.

Check that S3 is a group:

Other examples of finite groups are the more general permutation groups, the
subgroups G ⊆ Sn. Examples include the alternating group An of even permutations,
or the cyclic group Zn = ⟨(12 · · · n)⟩ ⊂ Sn generated by an n-cycle.

Rep Theory Preliminaries: Groups

A group is a set G with an operation ◦G × G −→ G :

1. The set has an identity

2. Every element has an inverse

Given a set X , the symmetric group SX is the set of bijections from X to X . If
|X | = n there are n! bijections; we typically denote it Sn. For example,

S3 =
{

(), (12), (13), (23), (123), (132)
}
.

We use notation () = (1)(2)(3) or (12) = (12)(3) in which we omit one-cyles.

Check that S3 is a group:

Other examples of finite groups are the more general permutation groups, the
subgroups G ⊆ Sn. Examples include the alternating group An of even permutations,
or the cyclic group Zn = ⟨(12 · · · n)⟩ ⊂ Sn generated by an n-cycle.

Rep Theory Preliminaries: Groups

A group is a set G with an operation ◦G × G −→ G :

1. The set has an identity

2. Every element has an inverse

Given a set X , the symmetric group SX is the set of bijections from X to X . If
|X | = n there are n! bijections; we typically denote it Sn. For example,

S3 =
{

(), (12), (13), (23), (123), (132)
}
.

We use notation () = (1)(2)(3) or (12) = (12)(3) in which we omit one-cyles.

Check that S3 is a group:

Other examples of finite groups are the more general permutation groups, the
subgroups G ⊆ Sn. Examples include the alternating group An of even permutations,
or the cyclic group Zn = ⟨(12 · · · n)⟩ ⊂ Sn generated by an n-cycle.

Rep Theory Preliminaries: Groups

Another example of a group, in this case infinite, is the Unitary Group2 U(d) of d × d
unitary matrices3. Similarly, the Special Unitary Group SU(d) corresponds to the
subgroup satisfying det(U) = 1.

For example,

{(
1 0
0 1

)
, i

(
0 1
1 0

)
, i

(
0 i
−i 0

)
, i

(
1 0
0 −1

)}
⊂ SU(2).

and

(
i 0
0 i

)
∈ U(2) and ̸∈ SU(2) because det(U) = −1.

As before, check that these are groups. For example, iX ◦ iZ = iY and iY which is
∈ SU(2) (since (iY)(iY)† = (iY)(−iY) = I)

2We will sometimes also denote it U(Cd).
3A unitary matrix U is such that UU† = I . Implies det U = e iϕ.

Rep Theory Preliminaries: Groups

Another example of a group, in this case infinite, is the Unitary Group2 U(d) of d × d
unitary matrices3. Similarly, the Special Unitary Group SU(d) corresponds to the
subgroup satisfying det(U) = 1. For example,

{(
1 0
0 1

)
, i

(
0 1
1 0

)
, i

(
0 i
−i 0

)
, i

(
1 0
0 −1

)}
⊂ SU(2).

and

(
i 0
0 i

)
∈ U(2) and ̸∈ SU(2) because det(U) = −1.

As before, check that these are groups. For example, iX ◦ iZ = iY and iY which is
∈ SU(2) (since (iY)(iY)† = (iY)(−iY) = I)

2We will sometimes also denote it U(Cd).
3A unitary matrix U is such that UU† = I . Implies det U = e iϕ.

Rep Theory Preliminaries: Groups

Another example of a group, in this case infinite, is the Unitary Group2 U(d) of d × d
unitary matrices3. Similarly, the Special Unitary Group SU(d) corresponds to the
subgroup satisfying det(U) = 1. For example,

{(
1 0
0 1

)
, i

(
0 1
1 0

)
, i

(
0 i
−i 0

)
, i

(
1 0
0 −1

)}
⊂ SU(2).

and

(
i 0
0 i

)
∈ U(2) and ̸∈ SU(2) because det(U) = −1.

As before, check that these are groups. For example, iX ◦ iZ = iY and iY which is
∈ SU(2) (since (iY)(iY)† = (iY)(−iY) = I)

2We will sometimes also denote it U(Cd).
3A unitary matrix U is such that UU† = I . Implies det U = e iϕ.

Rep Theory Preliminaries: Reps

So far, we have only specified how groups G can act on themselves,
i.e., via the product ◦ : G × G −→ G .

The action of groups can be extended to vector spaces V , if we map each group
element g to a linear operator R(g) on V .

A unitary (group) representation R of G on V is a map

R : G −→ U(V)

that is a homomorphism between the groups G and U(V), in the sense that it
preserves the group structure:

R(g1)R(g2) = R(g1 ◦ g2) . (1)

A vector space V that supports a G -rep is called a G -module.

Rep Theory Preliminaries: Reps

So far, we have only specified how groups G can act on themselves,
i.e., via the product ◦ : G × G −→ G .

The action of groups can be extended to vector spaces V , if we map each group
element g to a linear operator R(g) on V .

A unitary (group) representation R of G on V is a map

R : G −→ U(V)

that is a homomorphism between the groups G and U(V), in the sense that it
preserves the group structure:

R(g1)R(g2) = R(g1 ◦ g2) . (1)

A vector space V that supports a G -rep is called a G -module.

Rep Theory Preliminaries: Reps

So far, we have only specified how groups G can act on themselves,
i.e., via the product ◦ : G × G −→ G .

The action of groups can be extended to vector spaces V , if we map each group
element g to a linear operator R(g) on V .

A unitary (group) representation R of G on V is a map

R : G −→ U(V)

that is a homomorphism between the groups G and U(V), in the sense that it
preserves the group structure:

R(g1)R(g2) = R(g1 ◦ g2) . (1)

A vector space V that supports a G -rep is called a G -module.

Rep Theory Preliminaries: Reps

So far, we have only specified how groups G can act on themselves,
i.e., via the product ◦ : G × G −→ G .

The action of groups can be extended to vector spaces V , if we map each group
element g to a linear operator R(g) on V .

A unitary (group) representation R of G on V is a map

R : G −→ U(V)

that is a homomorphism between the groups G and U(V), in the sense that it
preserves the group structure:

R(g1)R(g2) = R(g1 ◦ g2) . (1)

A vector space V that supports a G -rep is called a G -module.

Rep Theory Preliminaries: Examples of reps

Special Unitary Group: The standard representation Rstd on Cd is the map
Rstd(U ∈ SU(d)) = U.

Symmetric Group (and subgroups): Let G ⊆ Sn.

1. Permutation representation: the action of G on n-dimensional vector space
V = Cn = span{|i⟩}ni=1 by permutation of canonical basis,

Rdef(σ) |i⟩ = |σ(i)⟩

2. Regular representation: the action of G on V = C|G | = span{|g⟩}g∈G (that is,
on itself) by

R left
reg (g) |h⟩ = |gh⟩

or
Rright
reg (g) |h⟩ = |hg−1⟩

Fun fact: Group representations describe symmetries, transformations that leave
certain vectors invariant. Think of the Sn-invariance of GHZ state, or the
SU(2)-invariance of isotropic (XXX) Heisenberg interactions.

Rep Theory Preliminaries: Examples of reps

Special Unitary Group: The standard representation Rstd on Cd is the map
Rstd(U ∈ SU(d)) = U.

Symmetric Group (and subgroups): Let G ⊆ Sn.

1. Permutation representation: the action of G on n-dimensional vector space
V = Cn = span{|i⟩}ni=1 by permutation of canonical basis,

Rdef(σ) |i⟩ = |σ(i)⟩

2. Regular representation: the action of G on V = C|G | = span{|g⟩}g∈G (that is,
on itself) by

R left
reg (g) |h⟩ = |gh⟩

or
Rright
reg (g) |h⟩ = |hg−1⟩

Fun fact: Group representations describe symmetries, transformations that leave
certain vectors invariant. Think of the Sn-invariance of GHZ state, or the
SU(2)-invariance of isotropic (XXX) Heisenberg interactions.

Irreducible Representations and Decompositions

Let R be a G -rep and V be a G -module. Then we say (R,V) is irreducible (an irrep)
if there are no proper invariant subspaces W ⊂ V under the action of G .

For example, consider the permutation representation of S4 on V = C4, where
R(σ) |i⟩ = |σ(i)⟩. Some explicit elements in the image of R are

R ((1, 2)) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and R ((1, 2, 3, 4)) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


Q: Is this irreducible?

A: No, there is a subspace W = span
{∑4

i=1 |i⟩
}

that is invariant under all

permutations. But if we express V = W ⊕W⊥, with
W⊥ = span{|1⟩ − |2⟩ , |2⟩ − |3⟩ , |3⟩ − |4⟩} the (3-dimensional) complement of W , we
can verify that these two are irreducible.

Irreducible Representations and Decompositions

Let R be a G -rep and V be a G -module. Then we say (R,V) is irreducible (an irrep)
if there are no proper invariant subspaces W ⊂ V under the action of G .

For example, consider the permutation representation of S4 on V = C4, where
R(σ) |i⟩ = |σ(i)⟩. Some explicit elements in the image of R are

R ((1, 2)) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and R ((1, 2, 3, 4)) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


Q: Is this irreducible?

A: No, there is a subspace W = span
{∑4

i=1 |i⟩
}

that is invariant under all

permutations. But if we express V = W ⊕W⊥, with
W⊥ = span{|1⟩ − |2⟩ , |2⟩ − |3⟩ , |3⟩ − |4⟩} the (3-dimensional) complement of W , we
can verify that these two are irreducible.

Complete Reducibility

Irreducible representations are the building blocks of representations, in the sense that
any R of a group G on V has a unique decomposition into irreps.

Explicitly, this means there is a change of basis U that takes V to a direct sum of

irreducible submodules Vα,i
G ⊂ V , where α is used to label the different irrep instances

and i ∈ mα is a copy (or multiplicity) index. In this basis, the group action is
block-diagonal, with indentical blocks rαG (g) of size dim(Vα) ≡ dα repeated mα

times:

UR(g)U† =
⊕
α

Imα ⊗ rαG (g) (2)

When a group is abelian, all irreps are one dimensional and thus, in the basis U, R(g)
is diagonal. For reasons that will be evident later, such basis U that maximally
block-diagonalizes the group action is called the Fourier basis.

Complete Reducibility

Irreducible representations are the building blocks of representations, in the sense that
any R of a group G on V has a unique decomposition into irreps.

Explicitly, this means there is a change of basis U that takes V to a direct sum of

irreducible submodules Vα,i
G ⊂ V , where α is used to label the different irrep instances

and i ∈ mα is a copy (or multiplicity) index. In this basis, the group action is
block-diagonal, with indentical blocks rαG (g) of size dim(Vα) ≡ dα repeated mα

times:

UR(g)U† =
⊕
α

Imα ⊗ rαG (g) (2)

When a group is abelian, all irreps are one dimensional and thus, in the basis U, R(g)
is diagonal. For reasons that will be evident later, such basis U that maximally
block-diagonalizes the group action is called the Fourier basis.

Complete Reducibility

Irreducible representations are the building blocks of representations, in the sense that
any R of a group G on V has a unique decomposition into irreps.

Explicitly, this means there is a change of basis U that takes V to a direct sum of

irreducible submodules Vα,i
G ⊂ V , where α is used to label the different irrep instances

and i ∈ mα is a copy (or multiplicity) index. In this basis, the group action is
block-diagonal, with indentical blocks rαG (g) of size dim(Vα) ≡ dα repeated mα

times:

UR(g)U† =
⊕
α

Imα ⊗ rαG (g) (2)

When a group is abelian, all irreps are one dimensional and thus, in the basis U, R(g)
is diagonal. For reasons that will be evident later, such basis U that maximally
block-diagonalizes the group action is called the Fourier basis.

Apps of RT in QC: An outline.

I see two main areas of application of RT in QC:
• Analitic: RT provides a tools to analize quantum algorithms, especially but not

necesarilly those containing some degree of randomization. Examples include:
▶ Concentration of Variational Algorithms.
▶ Classical Shadows
▶ Random Circuit Sampling
▶ Randomized Benchmarking

• Algorithmic: We can use RT to develop quantum transforms and algorithms
based on them. Some examples are:
▶ Transforms: (abelian) Quantum Fourier Transforms (QFTs), Non-abelian QFTS,

Quantum Schur Transform, etc.
▶ Algorithms based on such transforms, include phase estimation, (abelian and

non-abelian) Hidden Subgroup Problem, etc.

Apps of RT in QC: An outline.

I see two main areas of application of RT in QC:
• Analitic: RT provides a tools to analize quantum algorithms, especially but not

necesarilly those containing some degree of randomization. Examples include:
▶ Concentration of Variational Algorithms.
▶ Classical Shadows
▶ Random Circuit Sampling
▶ Randomized Benchmarking

• Algorithmic: We can use RT to develop quantum transforms and algorithms
based on them. Some examples are:
▶ Transforms: (abelian) Quantum Fourier Transforms (QFTs), Non-abelian QFTS,

Quantum Schur Transform, etc.
▶ Algorithms based on such transforms, include phase estimation, (abelian and

non-abelian) Hidden Subgroup Problem, etc.

A first app: the Discrete Fourier Transform (DFT) and the abelian QFT
Consider the cyclic group ZN and its representation shifting the computational basis
of V = CN , explicitly given by

R(j) =
N∑
i=1

|i⟩⟨i + j |

The action of j ∈ ZN on CN is to translate its basis by j units.

Consider a function f : ZN −→ C, or equivalently a vector |f ⟩ =
∑N

i=1 f (i) |i⟩. The
Discrete Fourier Transform (DFT) maps ’discrete position basis’

|i⟩ 7→
1

√
N

∑
k∈[N]

w ik
N |k⟩

to ’discrete momentum basis’, where wN = e i2π/N is the N-th root of unity.
Note that the group action (discrete translation operations) is diagonal in the
momentum basis (Fourier basis)

R(j) |k⟩ = w jk
N |k⟩ .

Each |k⟩ spans a one-dimensional non-isomorphic irreducible representation4

V k
ZN

= span{|k⟩}, such that

V ∼=
⊕
k∈[N]

V k
ZN

(3)

4Check group homo property: R(j1)R(j2) = w
j1k
N

w
j2k
N

= R(j1 + j2)

A first app: the Discrete Fourier Transform (DFT) and the abelian QFT
Consider the cyclic group ZN and its representation shifting the computational basis
of V = CN , explicitly given by

R(j) =
N∑
i=1

|i⟩⟨i + j |

The action of j ∈ ZN on CN is to translate its basis by j units.

Consider a function f : ZN −→ C, or equivalently a vector |f ⟩ =
∑N

i=1 f (i) |i⟩. The
Discrete Fourier Transform (DFT) maps ’discrete position basis’

|i⟩ 7→
1

√
N

∑
k∈[N]

w ik
N |k⟩

to ’discrete momentum basis’, where wN = e i2π/N is the N-th root of unity.

Note that the group action (discrete translation operations) is diagonal in the
momentum basis (Fourier basis)

R(j) |k⟩ = w jk
N |k⟩ .

Each |k⟩ spans a one-dimensional non-isomorphic irreducible representation4

V k
ZN

= span{|k⟩}, such that

V ∼=
⊕
k∈[N]

V k
ZN

(3)

4Check group homo property: R(j1)R(j2) = w
j1k
N

w
j2k
N

= R(j1 + j2)

A first app: the Discrete Fourier Transform (DFT) and the abelian QFT
Consider the cyclic group ZN and its representation shifting the computational basis
of V = CN , explicitly given by

R(j) =
N∑
i=1

|i⟩⟨i + j |

The action of j ∈ ZN on CN is to translate its basis by j units.

Consider a function f : ZN −→ C, or equivalently a vector |f ⟩ =
∑N

i=1 f (i) |i⟩. The
Discrete Fourier Transform (DFT) maps ’discrete position basis’

|i⟩ 7→
1

√
N

∑
k∈[N]

w ik
N |k⟩

to ’discrete momentum basis’, where wN = e i2π/N is the N-th root of unity.
Note that the group action (discrete translation operations) is diagonal in the
momentum basis (Fourier basis)

R(j) |k⟩ = w jk
N |k⟩ .

Each |k⟩ spans a one-dimensional non-isomorphic irreducible representation4

V k
ZN

= span{|k⟩}, such that

V ∼=
⊕
k∈[N]

V k
ZN

(3)

4Check group homo property: R(j1)R(j2) = w
j1k
N

w
j2k
N

= R(j1 + j2)

A first app: the Discrete Fourier Transform (DFT) and the abelian QFT
Consider the cyclic group ZN and its representation shifting the computational basis
of V = CN , explicitly given by

R(j) =
N∑
i=1

|i⟩⟨i + j |

The action of j ∈ ZN on CN is to translate its basis by j units.

Consider a function f : ZN −→ C, or equivalently a vector |f ⟩ =
∑N

i=1 f (i) |i⟩. The
Discrete Fourier Transform (DFT) maps ’discrete position basis’

|i⟩ 7→
1

√
N

∑
k∈[N]

w ik
N |k⟩

to ’discrete momentum basis’, where wN = e i2π/N is the N-th root of unity.
Note that the group action (discrete translation operations) is diagonal in the
momentum basis (Fourier basis)

R(j) |k⟩ = w jk
N |k⟩ .

Each |k⟩ spans a one-dimensional non-isomorphic irreducible representation4

V k
ZN

= span{|k⟩}, such that

V ∼=
⊕
k∈[N]

V k
ZN

(3)

4Check group homo property: R(j1)R(j2) = w
j1k
N

w
j2k
N

= R(j1 + j2)

FFT and QFT

The cost of performing DFT is O(N2)5. The DFT is unitary, and can be compiled
into a quantum circuit (encoding CN with log(N) qubits) using only Õ(log N) gates6

–welcome to the Quantum Fourier transform (QFT)7.

This quantum speedup in rotating discrete position to basis where cyclic group acts
diagonally has led to some of the most successful quantum algorithms known to date:
Period Finding (PF):

• Given a function f : ZN → S , promised to be periodic: ∃s such that f (x) = f (s + x), find
the period s.

• Classical algorithms take O(s) time; s could be of order N = 2n. Shor’s quantum algorithm

is efficient, works in Õ(n2) time.

• PF is an instance of the more general problem called the Abelian Hidden Subgroup Problem
(HSP).

Factoring:

• Given N, find unique {mi} such that N = 2m1 3m2 · · · .

• For N = 2n, best classical algorithms run in time O(exp(
√
n)). Instead, Shor’s quantum

algorithm (an application of PF) runs in time Õ(n2).

What’s special about G = Z2n? re: not much! We will come back to this in the more
general setting of other G ⊆ Sn than Zn and the diagonalization of their regular reps –
we will call efficient compilations of them into quantum circuits ’G -QFTs’.

5Optimized by Cooley and Tuckey in 65’ (FFT) to time O(N log N)
6originally realized by Don Coppersmith.
7Over the abelian group ZN .

FFT and QFT

The cost of performing DFT is O(N2)5. The DFT is unitary, and can be compiled
into a quantum circuit (encoding CN with log(N) qubits) using only Õ(log N) gates6

–welcome to the Quantum Fourier transform (QFT)7.

This quantum speedup in rotating discrete position to basis where cyclic group acts
diagonally has led to some of the most successful quantum algorithms known to date:
Period Finding (PF):

• Given a function f : ZN → S , promised to be periodic: ∃s such that f (x) = f (s + x), find
the period s.

• Classical algorithms take O(s) time; s could be of order N = 2n. Shor’s quantum algorithm

is efficient, works in Õ(n2) time.

• PF is an instance of the more general problem called the Abelian Hidden Subgroup Problem
(HSP).

Factoring:

• Given N, find unique {mi} such that N = 2m1 3m2 · · · .

• For N = 2n, best classical algorithms run in time O(exp(
√
n)). Instead, Shor’s quantum

algorithm (an application of PF) runs in time Õ(n2).

What’s special about G = Z2n? re: not much! We will come back to this in the more
general setting of other G ⊆ Sn than Zn and the diagonalization of their regular reps –
we will call efficient compilations of them into quantum circuits ’G -QFTs’.

5Optimized by Cooley and Tuckey in 65’ (FFT) to time O(N log N)
6originally realized by Don Coppersmith.
7Over the abelian group ZN .

FFT and QFT

The cost of performing DFT is O(N2)5. The DFT is unitary, and can be compiled
into a quantum circuit (encoding CN with log(N) qubits) using only Õ(log N) gates6

–welcome to the Quantum Fourier transform (QFT)7.

This quantum speedup in rotating discrete position to basis where cyclic group acts
diagonally has led to some of the most successful quantum algorithms known to date:
Period Finding (PF):

• Given a function f : ZN → S , promised to be periodic: ∃s such that f (x) = f (s + x), find
the period s.

• Classical algorithms take O(s) time; s could be of order N = 2n. Shor’s quantum algorithm

is efficient, works in Õ(n2) time.

• PF is an instance of the more general problem called the Abelian Hidden Subgroup Problem
(HSP).

Factoring:

• Given N, find unique {mi} such that N = 2m1 3m2 · · · .

• For N = 2n, best classical algorithms run in time O(exp(
√
n)). Instead, Shor’s quantum

algorithm (an application of PF) runs in time Õ(n2).

What’s special about G = Z2n? re: not much! We will come back to this in the more
general setting of other G ⊆ Sn than Zn and the diagonalization of their regular reps –
we will call efficient compilations of them into quantum circuits ’G -QFTs’.

5Optimized by Cooley and Tuckey in 65’ (FFT) to time O(N log N)
6originally realized by Don Coppersmith.
7Over the abelian group ZN .

RT of the symmetric group

In general, the irreducible representations of a group are in one-to-one correspondence
with their Conjugacy Classes (CCs). As we’ll see below, Sn conjugacy classes are
parametrized by integer partitions λ ⊢ n, and thus, so will Sn-irreps be.

Any permutation σ ∈ Sn has a unique cycle decomposition into a product of disjoint
cycles. For example,

σ = (1, 3, 5)(2, 4)(6)(7, 8) ∈ S8

Since cycles are disjoint, order doesnt matter so we can order larger cycles first.
Thus any given cycle type can be captured by a partition8 λ ⊢ n, a way of breaking
down n into (at most n) parts. For example, we here have 8 = 3 + 2 + 2 + 1,
corresponding to the partition λ = [3, 2, 2, 1] ⊢ 8.

Partitions are typically depicted diagramattically by Young diagrams9

λ = [4] ↔
λ = [3, 1] ↔
λ = [2, 1, 1] ↔

λ = [2, 2] ↔
λ = [1, 1, 1, 1] ↔

8A sequence λ = (λ1, · · · , λn) of weakly decreasing positive integers λ1 ≥ · · · ≥ λn) that add up to n.
Note that this condition restricts to left-justified Young diagrams.

9A collection of boxes, arranged in left-justified rows with row-lengths in non-increasing order.

RT of the symmetric group

In general, the irreducible representations of a group are in one-to-one correspondence
with their Conjugacy Classes (CCs). As we’ll see below, Sn conjugacy classes are
parametrized by integer partitions λ ⊢ n, and thus, so will Sn-irreps be.

Any permutation σ ∈ Sn has a unique cycle decomposition into a product of disjoint
cycles. For example,

σ = (1, 3, 5)(2, 4)(6)(7, 8) ∈ S8

Since cycles are disjoint, order doesnt matter so we can order larger cycles first.

Thus any given cycle type can be captured by a partition8 λ ⊢ n, a way of breaking
down n into (at most n) parts. For example, we here have 8 = 3 + 2 + 2 + 1,
corresponding to the partition λ = [3, 2, 2, 1] ⊢ 8.

Partitions are typically depicted diagramattically by Young diagrams9

λ = [4] ↔
λ = [3, 1] ↔
λ = [2, 1, 1] ↔

λ = [2, 2] ↔
λ = [1, 1, 1, 1] ↔

8A sequence λ = (λ1, · · · , λn) of weakly decreasing positive integers λ1 ≥ · · · ≥ λn) that add up to n.
Note that this condition restricts to left-justified Young diagrams.

9A collection of boxes, arranged in left-justified rows with row-lengths in non-increasing order.

RT of the symmetric group

In general, the irreducible representations of a group are in one-to-one correspondence
with their Conjugacy Classes (CCs). As we’ll see below, Sn conjugacy classes are
parametrized by integer partitions λ ⊢ n, and thus, so will Sn-irreps be.

Any permutation σ ∈ Sn has a unique cycle decomposition into a product of disjoint
cycles. For example,

σ = (1, 3, 5)(2, 4)(6)(7, 8) ∈ S8

Since cycles are disjoint, order doesnt matter so we can order larger cycles first.
Thus any given cycle type can be captured by a partition8 λ ⊢ n, a way of breaking
down n into (at most n) parts. For example, we here have 8 = 3 + 2 + 2 + 1,
corresponding to the partition λ = [3, 2, 2, 1] ⊢ 8.

Partitions are typically depicted diagramattically by Young diagrams9

λ = [4] ↔
λ = [3, 1] ↔
λ = [2, 1, 1] ↔

λ = [2, 2] ↔
λ = [1, 1, 1, 1] ↔

8A sequence λ = (λ1, · · · , λn) of weakly decreasing positive integers λ1 ≥ · · · ≥ λn) that add up to n.
Note that this condition restricts to left-justified Young diagrams.

9A collection of boxes, arranged in left-justified rows with row-lengths in non-increasing order.

RT of the symmetric group

In general, the irreducible representations of a group are in one-to-one correspondence
with their Conjugacy Classes (CCs). As we’ll see below, Sn conjugacy classes are
parametrized by integer partitions λ ⊢ n, and thus, so will Sn-irreps be.

Any permutation σ ∈ Sn has a unique cycle decomposition into a product of disjoint
cycles. For example,

σ = (1, 3, 5)(2, 4)(6)(7, 8) ∈ S8

Since cycles are disjoint, order doesnt matter so we can order larger cycles first.
Thus any given cycle type can be captured by a partition8 λ ⊢ n, a way of breaking
down n into (at most n) parts. For example, we here have 8 = 3 + 2 + 2 + 1,
corresponding to the partition λ = [3, 2, 2, 1] ⊢ 8.

Partitions are typically depicted diagramattically by Young diagrams9

λ = [4] ↔
λ = [3, 1] ↔
λ = [2, 1, 1] ↔

λ = [2, 2] ↔
λ = [1, 1, 1, 1] ↔

8A sequence λ = (λ1, · · · , λn) of weakly decreasing positive integers λ1 ≥ · · · ≥ λn) that add up to n.
Note that this condition restricts to left-justified Young diagrams.

9A collection of boxes, arranged in left-justified rows with row-lengths in non-increasing order.

RT of the symmetric group

Consider the act of conjugating σ by some other permutation π: while σ changes into
σ′ = πσπ−1, its cycle type doesn’t. The conjugacy class (CC) of some σ in Sn is the
subset

Cσ =
{
πσπ−1 |π ∈ Sn

}
(4)

Let λ be the cycle type of σ. It turns out that Cσ = Cλ = {π ∈ Sn with c.t. λ.}.

CCs partition a group into disjoint subsets Sn =
⋃

λ⊢n Cλ. For example

S3 =
{

()
}

︸ ︷︷ ︸
C

⋃{
(12), (13), (23)

}
︸ ︷︷ ︸

C

⋃{
(123), (132)

}
︸ ︷︷ ︸

C

(5)

Having estabilshed that Sn-CCs and thus Sn-irreps are labelled by partitions λ ⊢ n, we
turn to their construction. We will denote Sn-irrep labelled by some λ ⊢ n, Vλ

Sn
.

RT of the symmetric group

Consider the act of conjugating σ by some other permutation π: while σ changes into
σ′ = πσπ−1, its cycle type doesn’t. The conjugacy class (CC) of some σ in Sn is the
subset

Cσ =
{
πσπ−1 |π ∈ Sn

}
(4)

Let λ be the cycle type of σ. It turns out that Cσ = Cλ = {π ∈ Sn with c.t. λ.}.

CCs partition a group into disjoint subsets Sn =
⋃

λ⊢n Cλ. For example

S3 =
{

()
}

︸ ︷︷ ︸
C

⋃{
(12), (13), (23)

}
︸ ︷︷ ︸

C

⋃{
(123), (132)

}
︸ ︷︷ ︸

C

(5)

Having estabilshed that Sn-CCs and thus Sn-irreps are labelled by partitions λ ⊢ n, we
turn to their construction. We will denote Sn-irrep labelled by some λ ⊢ n, Vλ

Sn
.

RT of the symmetric group

Consider the act of conjugating σ by some other permutation π: while σ changes into
σ′ = πσπ−1, its cycle type doesn’t. The conjugacy class (CC) of some σ in Sn is the
subset

Cσ =
{
πσπ−1 |π ∈ Sn

}
(4)

Let λ be the cycle type of σ. It turns out that Cσ = Cλ = {π ∈ Sn with c.t. λ.}.

CCs partition a group into disjoint subsets Sn =
⋃

λ⊢n Cλ. For example

S3 =
{

()
}

︸ ︷︷ ︸
C

⋃{
(12), (13), (23)

}
︸ ︷︷ ︸

C

⋃{
(123), (132)

}
︸ ︷︷ ︸

C

(5)

Having estabilshed that Sn-CCs and thus Sn-irreps are labelled by partitions λ ⊢ n, we
turn to their construction. We will denote Sn-irrep labelled by some λ ⊢ n, Vλ

Sn
.

Young’s Rule and Specht Modules

Consider Vλ
Sn

as a rep of the subgroup Sn−1 = {σ ∈ Sn |σ(n) = n} ⊂ Sn. Example

here10.

Young’s rule asserts that, as a rep of Sn−1 any Sn-irrep λ decomposes into
Sn−1-irreps in a multiplicity-free way

Vλ
Sn

↓Sn−1
∼=

⊕
λn−1∈λ−

V
λn−1

Sn−1
(6)

where λn−1 ⊢ n − 1. Crucially, we can iterate this process until we reach VS1
.

Lets define T to be a path in the chain of restrictions

T ≡ (, , , · · · , λ) (7)

We can more compactly describe T by a diagram λ that is filled the set [n] in such a
way that the filling encodes the path. For example, consider a path T = (, , ,).

The corresponding Standard Young Tableau (SYT)

T =
1 3
2 4

(8)

Instead the path T ′ = (, , ,) =
1 2
3 4

.

10For example, σ = (12)(34) ∈ S4 doesnt fix 4, but σ = (123)(4) does.

Young’s Rule and Specht Modules

Consider Vλ
Sn

as a rep of the subgroup Sn−1 = {σ ∈ Sn |σ(n) = n} ⊂ Sn. Example

here10.

Young’s rule asserts that, as a rep of Sn−1 any Sn-irrep λ decomposes into
Sn−1-irreps in a multiplicity-free way

Vλ
Sn

↓Sn−1
∼=

⊕
λn−1∈λ−

V
λn−1

Sn−1
(6)

where λn−1 ⊢ n − 1. Crucially, we can iterate this process until we reach VS1
.

Lets define T to be a path in the chain of restrictions

T ≡ (, , , · · · , λ) (7)

We can more compactly describe T by a diagram λ that is filled the set [n] in such a
way that the filling encodes the path. For example, consider a path T = (, , ,).
The corresponding Standard Young Tableau (SYT)

T =
1 3
2 4

(8)

Instead the path T ′ = (, , ,) =
1 2
3 4

.

10For example, σ = (12)(34) ∈ S4 doesnt fix 4, but σ = (123)(4) does.

Young’s Rule and Specht Modules

Consider Vλ
Sn

as a rep of the subgroup Sn−1 = {σ ∈ Sn |σ(n) = n} ⊂ Sn. Example

here10.

Young’s rule asserts that, as a rep of Sn−1 any Sn-irrep λ decomposes into
Sn−1-irreps in a multiplicity-free way

Vλ
Sn

↓Sn−1
∼=

⊕
λn−1∈λ−

V
λn−1

Sn−1
(6)

where λn−1 ⊢ n − 1. Crucially, we can iterate this process until we reach VS1
.

Lets define T to be a path in the chain of restrictions

T ≡ (, , , · · · , λ) (7)

We can more compactly describe T by a diagram λ that is filled the set [n] in such a
way that the filling encodes the path. For example, consider a path T = (, , ,).
The corresponding Standard Young Tableau (SYT)

T =
1 3
2 4

(8)

Instead the path T ′ = (, , ,) =
1 2
3 4

.

10For example, σ = (12)(34) ∈ S4 doesnt fix 4, but σ = (123)(4) does.

Young’s Rule and Specht Modules

Consider Vλ
Sn

as a rep of the subgroup Sn−1 = {σ ∈ Sn |σ(n) = n} ⊂ Sn. Example

here10.

Young’s rule asserts that, as a rep of Sn−1 any Sn-irrep λ decomposes into
Sn−1-irreps in a multiplicity-free way

Vλ
Sn

↓Sn−1
∼=

⊕
λn−1∈λ−

V
λn−1

Sn−1
(6)

where λn−1 ⊢ n − 1. Crucially, we can iterate this process until we reach VS1
.

Lets define T to be a path in the chain of restrictions

T ≡ (, , , · · · , λ) (7)

We can more compactly describe T by a diagram λ that is filled the set [n] in such a
way that the filling encodes the path. For example, consider a path T = (, , ,).
The corresponding Standard Young Tableau (SYT)

T =
1 3
2 4

(8)

Instead the path T ′ = (, , ,) =
1 2
3 4

.

10For example, σ = (12)(34) ∈ S4 doesnt fix 4, but σ = (123)(4) does.

Young’s Rule and Specht Modules

Consider Vλ
Sn

as a rep of the subgroup Sn−1 = {σ ∈ Sn |σ(n) = n} ⊂ Sn. Example

here10.

Young’s rule asserts that, as a rep of Sn−1 any Sn-irrep λ decomposes into
Sn−1-irreps in a multiplicity-free way

Vλ
Sn

↓Sn−1
∼=

⊕
λn−1∈λ−

V
λn−1

Sn−1
(6)

where λn−1 ⊢ n − 1. Crucially, we can iterate this process until we reach VS1
.

Lets define T to be a path in the chain of restrictions

T ≡ (, , , · · · , λ) (7)

We can more compactly describe T by a diagram λ that is filled the set [n] in such a
way that the filling encodes the path. For example, consider a path T = (, , ,).
The corresponding Standard Young Tableau (SYT)

T =
1 3
2 4

(8)

Instead the path T ′ = (, , ,) =
1 2
3 4

.

10For example, σ = (12)(34) ∈ S4 doesnt fix 4, but σ = (123)(4) does.

Young’s Basis

We know λ labels some Sn-irrep Vλ
Sn

, but what is its dimension? We can use Young’s
rule to figure that out:

dim(Vλ
Sn

) = dim
(⊕

λn−1

· · ·
⊕
λ2

⊕
VS1

)
=

∑
T∈SYT(λ)

= |SYT(λ)| . (9)

If the dimension of λ equals the number of SYTs, we can use each SYT to label a
distinct linearly independent basis vector in Vλ

Sn
. We get Young’s basis

Vλ
Sn

= span{|T ⟩}T∈λ (10)

All that remains to finish working out the representations Vλ
Sn

is to understand how
the group acts on this basis of SYTs.

Young’s Basis

We know λ labels some Sn-irrep Vλ
Sn

, but what is its dimension? We can use Young’s
rule to figure that out:

dim(Vλ
Sn

) = dim
(⊕

λn−1

· · ·
⊕
λ2

⊕
VS1

)
=

∑
T∈SYT(λ)

= |SYT(λ)| . (9)

If the dimension of λ equals the number of SYTs, we can use each SYT to label a
distinct linearly independent basis vector in Vλ

Sn
. We get Young’s basis

Vλ
Sn

= span{|T ⟩}T∈λ (10)

All that remains to finish working out the representations Vλ
Sn

is to understand how
the group acts on this basis of SYTs.

Young’s Basis

We know λ labels some Sn-irrep Vλ
Sn

, but what is its dimension? We can use Young’s
rule to figure that out:

dim(Vλ
Sn

) = dim
(⊕

λn−1

· · ·
⊕
λ2

⊕
VS1

)
=

∑
T∈SYT(λ)

= |SYT(λ)| . (9)

If the dimension of λ equals the number of SYTs, we can use each SYT to label a
distinct linearly independent basis vector in Vλ

Sn
. We get Young’s basis

Vλ
Sn

= span{|T ⟩}T∈λ (10)

All that remains to finish working out the representations Vλ
Sn

is to understand how
the group acts on this basis of SYTs.

Young’s Orthogonal Representation: Action of Sn on SYTs

Since Sn is generated by adjacent transpositions ti = (i , i + 1)〈{
ti

}n−1

i=1

〉
= Sn (11)

it is sufficient to work out the action of each ti on the SYTs.

This is given by

ti · |T ⟩ =
1

∆i (T)
|T ⟩ +

√
1 −

1

∆i (T)2
|ti · T ⟩ (12)

where

• ti · T is the tableau T with i and i + 1 swapped11

• ∆i (T) = conti+1(T) − conti (T)

• The i-content of a Tableau conti (T) is the content of the cell of T containing i

• The content of a cell u = (r , c) is just cont(u) = c − r

11Not necesarily a SYT anymore, but the amplitude will be zero in those cases.

Young’s Orthogonal Representation: Action of Sn on SYTs

Since Sn is generated by adjacent transpositions ti = (i , i + 1)〈{
ti

}n−1

i=1

〉
= Sn (11)

it is sufficient to work out the action of each ti on the SYTs.
This is given by

ti · |T ⟩ =
1

∆i (T)
|T ⟩ +

√
1 −

1

∆i (T)2
|ti · T ⟩ (12)

where

• ti · T is the tableau T with i and i + 1 swapped11

• ∆i (T) = conti+1(T) − conti (T)

• The i-content of a Tableau conti (T) is the content of the cell of T containing i

• The content of a cell u = (r , c) is just cont(u) = c − r

11Not necesarily a SYT anymore, but the amplitude will be zero in those cases.

Young’s Orthogonal Representation: Action of Sn on SYTs

Since Sn is generated by adjacent transpositions ti = (i , i + 1)〈{
ti

}n−1

i=1

〉
= Sn (11)

it is sufficient to work out the action of each ti on the SYTs.
This is given by

ti · |T ⟩ =
1

∆i (T)
|T ⟩ +

√
1 −

1

∆i (T)2
|ti · T ⟩ (12)

where

• ti · T is the tableau T with i and i + 1 swapped11

• ∆i (T) = conti+1(T) − conti (T)

• The i-content of a Tableau conti (T) is the content of the cell of T containing i

• The content of a cell u = (r , c) is just cont(u) = c − r

11Not necesarily a SYT anymore, but the amplitude will be zero in those cases.

Young’s Orthogonal Representation: Action of Sn on SYTs

Since Sn is generated by adjacent transpositions ti = (i , i + 1)〈{
ti

}n−1

i=1

〉
= Sn (11)

it is sufficient to work out the action of each ti on the SYTs.
This is given by

ti · |T ⟩ =
1

∆i (T)
|T ⟩ +

√
1 −

1

∆i (T)2
|ti · T ⟩ (12)

where

• ti · T is the tableau T with i and i + 1 swapped11

• ∆i (T) = conti+1(T) − conti (T)

• The i-content of a Tableau conti (T) is the content of the cell of T containing i

• The content of a cell u = (r , c) is just cont(u) = c − r

11Not necesarily a SYT anymore, but the amplitude will be zero in those cases.

Young’s Orthogonal Representation: Action of Sn on SYTs

Since Sn is generated by adjacent transpositions ti = (i , i + 1)〈{
ti

}n−1

i=1

〉
= Sn (11)

it is sufficient to work out the action of each ti on the SYTs.
This is given by

ti · |T ⟩ =
1

∆i (T)
|T ⟩ +

√
1 −

1

∆i (T)2
|ti · T ⟩ (12)

where

• ti · T is the tableau T with i and i + 1 swapped11

• ∆i (T) = conti+1(T) − conti (T)

• The i-content of a Tableau conti (T) is the content of the cell of T containing i

• The content of a cell u = (r , c) is just cont(u) = c − r

11Not necesarily a SYT anymore, but the amplitude will be zero in those cases.

Young’s Orthogonal Representation: Example.
For example, lets find the rep matrix for t1 = (12) ∈ S3 on

VS3
= span{| 1 2

3
⟩ , | 1 3

2
⟩}.

First, let see how it acts on | 1 2
3

⟩. Since

∆1

(
1 2
3

)
= cont2

(
1 2
3

)
− cont1

(
1 2
3

)
= 1 − 0 = 1

we have (12) | 1 2
3

⟩ = | 1 2
3

⟩. Similarly

∆1

(
1 3
2

)
= cont2

(
1 3
2

)
− cont1

(
1 3
2

)
= −1 − 0 = −1.

Thus

rS3
((12)) =

(
1 0
0 −1

)
(13)

If we also work out rS3
((23)), then given any σ ∈ S3 we can compile 12 13 it into a

product of such adjacent transpositions14 σ =
∏N

a=1 ga with ga ∈ {t1, t2}i , and finally

find rS3
(σ) by composing such rep matrices for the generators

∏N
i=1 rS3

(ti).

12It turns out the rep matrices are orthogonal.
13The speaker reminds audience members that are not fully convinced this is a correct way of building the

representation matrices that they can verify the procedure by testing the group homomorphism property.
14Explicitly, () = t2

i , (132) = (12)(23) and (123) = (23)(12).

Young’s Orthogonal Representation: Example.
For example, lets find the rep matrix for t1 = (12) ∈ S3 on

VS3
= span{| 1 2

3
⟩ , | 1 3

2
⟩}.

First, let see how it acts on | 1 2
3

⟩. Since

∆1

(
1 2
3

)
= cont2

(
1 2
3

)
− cont1

(
1 2
3

)
= 1 − 0 = 1

we have (12) | 1 2
3

⟩ = | 1 2
3

⟩. Similarly

∆1

(
1 3
2

)
= cont2

(
1 3
2

)
− cont1

(
1 3
2

)
= −1 − 0 = −1.

Thus

rS3
((12)) =

(
1 0
0 −1

)
(13)

If we also work out rS3
((23)), then given any σ ∈ S3 we can compile 12 13 it into a

product of such adjacent transpositions14 σ =
∏N

a=1 ga with ga ∈ {t1, t2}i , and finally

find rS3
(σ) by composing such rep matrices for the generators

∏N
i=1 rS3

(ti).

12It turns out the rep matrices are orthogonal.
13The speaker reminds audience members that are not fully convinced this is a correct way of building the

representation matrices that they can verify the procedure by testing the group homomorphism property.
14Explicitly, () = t2

i , (132) = (12)(23) and (123) = (23)(12).

Young’s Orthogonal Representation: Example.
For example, lets find the rep matrix for t1 = (12) ∈ S3 on

VS3
= span{| 1 2

3
⟩ , | 1 3

2
⟩}.

First, let see how it acts on | 1 2
3

⟩. Since

∆1

(
1 2
3

)
= cont2

(
1 2
3

)
− cont1

(
1 2
3

)
= 1 − 0 = 1

we have (12) | 1 2
3

⟩ = | 1 2
3

⟩. Similarly

∆1

(
1 3
2

)
= cont2

(
1 3
2

)
− cont1

(
1 3
2

)
= −1 − 0 = −1.

Thus

rS3
((12)) =

(
1 0
0 −1

)
(13)

If we also work out rS3
((23)), then given any σ ∈ S3 we can compile 12 13 it into a

product of such adjacent transpositions14 σ =
∏N

a=1 ga with ga ∈ {t1, t2}i , and finally

find rS3
(σ) by composing such rep matrices for the generators

∏N
i=1 rS3

(ti).

12It turns out the rep matrices are orthogonal.
13The speaker reminds audience members that are not fully convinced this is a correct way of building the

representation matrices that they can verify the procedure by testing the group homomorphism property.
14Explicitly, () = t2

i , (132) = (12)(23) and (123) = (23)(12).

Young’s Orthogonal Representation: Example.
For example, lets find the rep matrix for t1 = (12) ∈ S3 on

VS3
= span{| 1 2

3
⟩ , | 1 3

2
⟩}.

First, let see how it acts on | 1 2
3

⟩. Since

∆1

(
1 2
3

)
= cont2

(
1 2
3

)
− cont1

(
1 2
3

)
= 1 − 0 = 1

we have (12) | 1 2
3

⟩ = | 1 2
3

⟩. Similarly

∆1

(
1 3
2

)
= cont2

(
1 3
2

)
− cont1

(
1 3
2

)
= −1 − 0 = −1.

Thus

rS3
((12)) =

(
1 0
0 −1

)
(13)

If we also work out rS3
((23)), then given any σ ∈ S3 we can compile 12 13 it into a

product of such adjacent transpositions14 σ =
∏N

a=1 ga with ga ∈ {t1, t2}i , and finally

find rS3
(σ) by composing such rep matrices for the generators

∏N
i=1 rS3

(ti).

12It turns out the rep matrices are orthogonal.
13The speaker reminds audience members that are not fully convinced this is a correct way of building the

representation matrices that they can verify the procedure by testing the group homomorphism property.
14Explicitly, () = t2

i , (132) = (12)(23) and (123) = (23)(12).

Fourier Analysis on Groups and G -QFT

Consider some finite group G ⊆ Sn, and vectors |f ⟩ =
∑

g∈G f (g) |g⟩ ∈ H
(left-regular representation).

The G -QFT is the unitary transformation that block-diagonalizes such group action15.
For certain groups, this transform can be compiled into efficient quantum circuit:

• G = Z2n , the ’vanilla’ QFT is efficient (as we saw previously).

• G = Sn and certain subgroups16 are efficient.

What can we do with these non-abelian G -QFTs?
In [LH24] we show that one can ’factor representations’ – instead of finding m such

that N = 2m1 3m2 · · · we find m such that V = V⊕m1
1 ⊕ V⊕m2

2 ⊕ · · · :

15by mapping the group basis {|g⟩} to the irrep basis {|λ, i, j⟩}, where λ labels irreducible representations,
and i, j index the multiplicity and dimension.

16works by Beals and Moore. Note that log(n!) ∼ n log(n) so Õ(n) qubits for the register. The circuit

compilations are of depth Õ(n2), like abelian case.

Fourier Analysis on Groups and G -QFT

Consider some finite group G ⊆ Sn, and vectors |f ⟩ =
∑

g∈G f (g) |g⟩ ∈ H
(left-regular representation).

The G -QFT is the unitary transformation that block-diagonalizes such group action15.
For certain groups, this transform can be compiled into efficient quantum circuit:

• G = Z2n , the ’vanilla’ QFT is efficient (as we saw previously).

• G = Sn and certain subgroups16 are efficient.

What can we do with these non-abelian G -QFTs?

In [LH24] we show that one can ’factor representations’ – instead of finding m such

that N = 2m1 3m2 · · · we find m such that V = V⊕m1
1 ⊕ V⊕m2

2 ⊕ · · · :

15by mapping the group basis {|g⟩} to the irrep basis {|λ, i, j⟩}, where λ labels irreducible representations,
and i, j index the multiplicity and dimension.

16works by Beals and Moore. Note that log(n!) ∼ n log(n) so Õ(n) qubits for the register. The circuit

compilations are of depth Õ(n2), like abelian case.

Fourier Analysis on Groups and G -QFT

Consider some finite group G ⊆ Sn, and vectors |f ⟩ =
∑

g∈G f (g) |g⟩ ∈ H
(left-regular representation).

The G -QFT is the unitary transformation that block-diagonalizes such group action15.
For certain groups, this transform can be compiled into efficient quantum circuit:

• G = Z2n , the ’vanilla’ QFT is efficient (as we saw previously).

• G = Sn and certain subgroups16 are efficient.

What can we do with these non-abelian G -QFTs?
In [LH24] we show that one can ’factor representations’ – instead of finding m such

that N = 2m1 3m2 · · · we find m such that V = V⊕m1
1 ⊕ V⊕m2

2 ⊕ · · · :

15by mapping the group basis {|g⟩} to the irrep basis {|λ, i, j⟩}, where λ labels irreducible representations,
and i, j index the multiplicity and dimension.

16works by Beals and Moore. Note that log(n!) ∼ n log(n) so Õ(n) qubits for the register. The circuit

compilations are of depth Õ(n2), like abelian case.

Representations of the Unitary group

Consider SU(d) and let V = Cd the standard representation. If we take

V⊗2 ∼= Sym2(V) ⊕Alt2(V) (14)

of dims d(d + 1)/2 and d(d − 1)/2. Both are SU(d)-irreps.

Just like with Sn, it turns out we can label all polynomial17 SU(d)-irreps using
partitions λ ⊢ n, where instead of having n fixed we allow n to be arbitrary large
integer but we condition the number of parts l(λ) ≤ d .

For example, d = 2 and n = 4 we have V
SU(2)

, V
SU(2)

and V
SU(2)

. These correspond

to spin s = 2, 1 and 0 respectively. In general, the spin s(λ) = (λ1 − λ2)/2. Fun fact:

Given λ ⊢ n, irrep Vλ
SU(d)

appears (at least once18) in V⊗n.

17Meaning entries are poly of the entries of the standard rep matrix elements. Instead, rational reps are rational
functions of the matrix elements, e.g. the determinant rep.

18spoiler: appears dim(Vλ
Sn

) times.

Representations of the Unitary group

Consider SU(d) and let V = Cd the standard representation. If we take

V⊗2 ∼= Sym2(V) ⊕Alt2(V) (14)

of dims d(d + 1)/2 and d(d − 1)/2. Both are SU(d)-irreps.

Just like with Sn, it turns out we can label all polynomial17 SU(d)-irreps using
partitions λ ⊢ n, where instead of having n fixed we allow n to be arbitrary large
integer but we condition the number of parts l(λ) ≤ d .

For example, d = 2 and n = 4 we have V
SU(2)

, V
SU(2)

and V
SU(2)

. These correspond

to spin s = 2, 1 and 0 respectively. In general, the spin s(λ) = (λ1 − λ2)/2. Fun fact:

Given λ ⊢ n, irrep Vλ
SU(d)

appears (at least once18) in V⊗n.

17Meaning entries are poly of the entries of the standard rep matrix elements. Instead, rational reps are rational
functions of the matrix elements, e.g. the determinant rep.

18spoiler: appears dim(Vλ
Sn

) times.

Representations of the Unitary group

Consider SU(d) and let V = Cd the standard representation. If we take

V⊗2 ∼= Sym2(V) ⊕Alt2(V) (14)

of dims d(d + 1)/2 and d(d − 1)/2. Both are SU(d)-irreps.

Just like with Sn, it turns out we can label all polynomial17 SU(d)-irreps using
partitions λ ⊢ n, where instead of having n fixed we allow n to be arbitrary large
integer but we condition the number of parts l(λ) ≤ d .

For example, d = 2 and n = 4 we have V
SU(2)

, V
SU(2)

and V
SU(2)

. These correspond

to spin s = 2, 1 and 0 respectively. In general, the spin s(λ) = (λ1 − λ2)/2.

Fun fact:

Given λ ⊢ n, irrep Vλ
SU(d)

appears (at least once18) in V⊗n.

17Meaning entries are poly of the entries of the standard rep matrix elements. Instead, rational reps are rational
functions of the matrix elements, e.g. the determinant rep.

18spoiler: appears dim(Vλ
Sn

) times.

Representations of the Unitary group

Consider SU(d) and let V = Cd the standard representation. If we take

V⊗2 ∼= Sym2(V) ⊕Alt2(V) (14)

of dims d(d + 1)/2 and d(d − 1)/2. Both are SU(d)-irreps.

Just like with Sn, it turns out we can label all polynomial17 SU(d)-irreps using
partitions λ ⊢ n, where instead of having n fixed we allow n to be arbitrary large
integer but we condition the number of parts l(λ) ≤ d .

For example, d = 2 and n = 4 we have V
SU(2)

, V
SU(2)

and V
SU(2)

. These correspond

to spin s = 2, 1 and 0 respectively. In general, the spin s(λ) = (λ1 − λ2)/2. Fun fact:

Given λ ⊢ n, irrep Vλ
SU(d)

appears (at least once18) in V⊗n.

17Meaning entries are poly of the entries of the standard rep matrix elements. Instead, rational reps are rational
functions of the matrix elements, e.g. the determinant rep.

18spoiler: appears dim(Vλ
Sn

) times.

Gelfand-Tseltsin basis
Not only we can label SU(d) irreps by λ, but also, just like for Sn, their branching is
multiplicity free

Vλ
SU(d) ↓SU(d−1)

∼=
⊕

λd−1∈λ−
l(λd−1)≤d−1

V
λd−1

SU(d−1)
(15)

Thus, again, we can label basis by paths in the restriction19.

Let us use M to denote a path M = (λd , λd−1, · · · , λk , · · · , λ1) where λk is a
partition (with l(λk) ≤ k) labeling some SU(k)-irrep (with k ∈ [1, d]) at some point in
the restriction chain from λ ≡ λd . Let’s think of each λk as a k-dimensional20 vector
with i-th component λk,i ≡ [λk]i .

The condition of removing boxes given the length constraint can be restated
graphically by aligning the vectors λk in an inverted pyramid called GT pattern and
asking each of the entries of the vectors to lie in between the two entries just above21

M =


λd,1 λd,2 · · · λd,d−1 λd,d

λd−1,1 · · · λd−1,d−1

. . .
...

...

λ2,1 λ2,2

λ1,1



19I recommend [GBO23]
20We pad with zeros if necessary.
21Formally, λk,i ≤ λk−1,i ≤ λk,i−1.

Gelfand-Tseltsin basis
Not only we can label SU(d) irreps by λ, but also, just like for Sn, their branching is
multiplicity free

Vλ
SU(d) ↓SU(d−1)

∼=
⊕

λd−1∈λ−
l(λd−1)≤d−1

V
λd−1

SU(d−1)
(15)

Thus, again, we can label basis by paths in the restriction19.

Let us use M to denote a path M = (λd , λd−1, · · · , λk , · · · , λ1) where λk is a
partition (with l(λk) ≤ k) labeling some SU(k)-irrep (with k ∈ [1, d]) at some point in
the restriction chain from λ ≡ λd . Let’s think of each λk as a k-dimensional20 vector
with i-th component λk,i ≡ [λk]i .

The condition of removing boxes given the length constraint can be restated
graphically by aligning the vectors λk in an inverted pyramid called GT pattern and
asking each of the entries of the vectors to lie in between the two entries just above21

M =


λd,1 λd,2 · · · λd,d−1 λd,d

λd−1,1 · · · λd−1,d−1

. . .
...

...

λ2,1 λ2,2

λ1,1



19I recommend [GBO23]
20We pad with zeros if necessary.
21Formally, λk,i ≤ λk−1,i ≤ λk,i−1.

Gelfand-Tseltsin basis
Not only we can label SU(d) irreps by λ, but also, just like for Sn, their branching is
multiplicity free

Vλ
SU(d) ↓SU(d−1)

∼=
⊕

λd−1∈λ−
l(λd−1)≤d−1

V
λd−1

SU(d−1)
(15)

Thus, again, we can label basis by paths in the restriction19.

Let us use M to denote a path M = (λd , λd−1, · · · , λk , · · · , λ1) where λk is a
partition (with l(λk) ≤ k) labeling some SU(k)-irrep (with k ∈ [1, d]) at some point in
the restriction chain from λ ≡ λd . Let’s think of each λk as a k-dimensional20 vector
with i-th component λk,i ≡ [λk]i .

The condition of removing boxes given the length constraint can be restated
graphically by aligning the vectors λk in an inverted pyramid called GT pattern and
asking each of the entries of the vectors to lie in between the two entries just above21

M =


λd,1 λd,2 · · · λd,d−1 λd,d

λd−1,1 · · · λd−1,d−1

. . .
...

...

λ2,1 λ2,2

λ1,1


19I recommend [GBO23]
20We pad with zeros if necessary.
21Formally, λk,i ≤ λk−1,i ≤ λk,i−1.

GT patterns and SU-irreps: Examples.

Lets start easy. The standard rep corresponds to V
SU(d)

, and we choose d = 3. The

allowed patterns are:

We can also take a look at the irreducible modules that corresponds to λ ⊢ 2:

Finally, again, this route takes us to explicit matrix construction22.

22There is a way to write down the action of su(d)-generators (simple roots and Cartan) on any GT-pattern M,
and in turn for any Lie group element via exponentiation.

GT patterns and SU-irreps: Examples.

Lets start easy. The standard rep corresponds to V
SU(d)

, and we choose d = 3. The

allowed patterns are:

We can also take a look at the irreducible modules that corresponds to λ ⊢ 2:

Finally, again, this route takes us to explicit matrix construction22.

22There is a way to write down the action of su(d)-generators (simple roots and Cartan) on any GT-pattern M,
and in turn for any Lie group element via exponentiation.

GT patterns and SU-irreps: Examples.

Lets start easy. The standard rep corresponds to V
SU(d)

, and we choose d = 3. The

allowed patterns are:

We can also take a look at the irreducible modules that corresponds to λ ⊢ 2:

Finally, again, this route takes us to explicit matrix construction22.

22There is a way to write down the action of su(d)-generators (simple roots and Cartan) on any GT-pattern M,
and in turn for any Lie group element via exponentiation.

The Schur-Weyl duality: Linear Algebraic version

We’ve learnt about SU(d) and Sn RTs. It turns out they are intertwined.

Consider the n-fold tensor product of the standard rep H = (Cd)⊗n and note both
SU(d) and Sn have natural actions here:

• SU(d) acts locally and uniformly along the n-copies via Q(U) = U⊗n

• Sn acts by permuting the copies P : Sn −→ U((Cd)⊗n) given by
P(σ) |v1⟩ ⊗ · · · ⊗ |vn⟩ = |vσ−1(1)⟩ ⊗ · · · ⊗ |vσ−1(n)⟩.

Note that these actions commute. For all U ∈ SU(d) and σ ∈ Sn, [Q(U),P(σ)] = 0.
But there’s more to it. Let us introduce two matrix subalgebras of End(H)23

U = span{Q(U)}U∈SU(d) and P = span{P(σ)}σ∈Sn (16)

Then,
((Cd)⊗n)U = P and ((Cd)⊗n)P = U (17)

This is the linear algebraic version of SW duality: not only P(σ) commutes with all
U⊗n, but all that commutes with U⊗n is a sum of permutations:

[M,U⊗n] = 0 ↔ M =
∑
σ

cσP(σ) . (18)

23Given a G -module V , denote VG the subspace of G -invariants (aka, the commutant of G). Similarly, VA is
A-invariant subspace of A-module V for A some matrix algebra.

The Schur-Weyl duality: Linear Algebraic version

We’ve learnt about SU(d) and Sn RTs. It turns out they are intertwined.

Consider the n-fold tensor product of the standard rep H = (Cd)⊗n and note both
SU(d) and Sn have natural actions here:

• SU(d) acts locally and uniformly along the n-copies via Q(U) = U⊗n

• Sn acts by permuting the copies P : Sn −→ U((Cd)⊗n) given by
P(σ) |v1⟩ ⊗ · · · ⊗ |vn⟩ = |vσ−1(1)⟩ ⊗ · · · ⊗ |vσ−1(n)⟩.

Note that these actions commute. For all U ∈ SU(d) and σ ∈ Sn, [Q(U),P(σ)] = 0.
But there’s more to it. Let us introduce two matrix subalgebras of End(H)23

U = span{Q(U)}U∈SU(d) and P = span{P(σ)}σ∈Sn (16)

Then,
((Cd)⊗n)U = P and ((Cd)⊗n)P = U (17)

This is the linear algebraic version of SW duality: not only P(σ) commutes with all
U⊗n, but all that commutes with U⊗n is a sum of permutations:

[M,U⊗n] = 0 ↔ M =
∑
σ

cσP(σ) . (18)

23Given a G -module V , denote VG the subspace of G -invariants (aka, the commutant of G). Similarly, VA is
A-invariant subspace of A-module V for A some matrix algebra.

The Schur-Weyl duality: Linear Algebraic version

We’ve learnt about SU(d) and Sn RTs. It turns out they are intertwined.

Consider the n-fold tensor product of the standard rep H = (Cd)⊗n and note both
SU(d) and Sn have natural actions here:

• SU(d) acts locally and uniformly along the n-copies via Q(U) = U⊗n

• Sn acts by permuting the copies P : Sn −→ U((Cd)⊗n) given by
P(σ) |v1⟩ ⊗ · · · ⊗ |vn⟩ = |vσ−1(1)⟩ ⊗ · · · ⊗ |vσ−1(n)⟩.

Note that these actions commute. For all U ∈ SU(d) and σ ∈ Sn, [Q(U),P(σ)] = 0.
But there’s more to it. Let us introduce two matrix subalgebras of End(H)23

U = span{Q(U)}U∈SU(d) and P = span{P(σ)}σ∈Sn (16)

Then,
((Cd)⊗n)U = P and ((Cd)⊗n)P = U (17)

This is the linear algebraic version of SW duality: not only P(σ) commutes with all
U⊗n, but all that commutes with U⊗n is a sum of permutations:

[M,U⊗n] = 0 ↔ M =
∑
σ

cσP(σ) . (18)

23Given a G -module V , denote VG the subspace of G -invariants (aka, the commutant of G). Similarly, VA is
A-invariant subspace of A-module V for A some matrix algebra.

The Schur-Weyl duality: Linear Algebraic version

We’ve learnt about SU(d) and Sn RTs. It turns out they are intertwined.

Consider the n-fold tensor product of the standard rep H = (Cd)⊗n and note both
SU(d) and Sn have natural actions here:

• SU(d) acts locally and uniformly along the n-copies via Q(U) = U⊗n

• Sn acts by permuting the copies P : Sn −→ U((Cd)⊗n) given by
P(σ) |v1⟩ ⊗ · · · ⊗ |vn⟩ = |vσ−1(1)⟩ ⊗ · · · ⊗ |vσ−1(n)⟩.

Note that these actions commute. For all U ∈ SU(d) and σ ∈ Sn, [Q(U),P(σ)] = 0.
But there’s more to it. Let us introduce two matrix subalgebras of End(H)23

U = span{Q(U)}U∈SU(d) and P = span{P(σ)}σ∈Sn (16)

Then,
((Cd)⊗n)U = P and ((Cd)⊗n)P = U (17)

This is the linear algebraic version of SW duality: not only P(σ) commutes with all
U⊗n, but all that commutes with U⊗n is a sum of permutations:

[M,U⊗n] = 0 ↔ M =
∑
σ

cσP(σ) . (18)

23Given a G -module V , denote VG the subspace of G -invariants (aka, the commutant of G). Similarly, VA is
A-invariant subspace of A-module V for A some matrix algebra.

Apps of SW duality: Computing Moments of unitary designs

A clear application of SW duality is in computing moments of Haar random unitaries
or designs.

Let H = (Cd)⊗t and L(H) the space of linear operators on H. Let

T (t)
SU(d)

=
∫
U∈SU(d) U

⊗t(·)(U†)⊗t be the t-th fold moment superoperator (or twirl)

from L(H) −→ L(H), and T
(t)
SU(d)

= vecT (t)
SU(d)

= EU [U⊗t ⊗ Ū⊗t] its vectorization.

It is a well known fact that given a rep R of group G , one can explicitly write a
projector into any isotypic α via

Πα =
dα

|G |
∑
g∈G

χλ(g)R(g) (19)

Instantiation24 of this expression for G = SU(d), R(U) = U⊗t ⊗ Ū⊗t and α = triv

(with χα(U) = 1) takes us to T
(t)
G , meaning T

(t)
SU(d)

is the orthogonal projector onto

L(H)SU(d), the trivial isotypic of the SU(d)-module L(H) – the commutant of
U⊗t ⊗ Ū⊗t .

24Here, χα(g) = Tr[Rα(g)] is the character of irrep α. Similar expression for Lie groups replaces the uniform

probability p(g) = 1
|G| by the Haar measure pHaar(U).

Apps of SW duality: Computing Moments of unitary designs

A clear application of SW duality is in computing moments of Haar random unitaries
or designs.

Let H = (Cd)⊗t and L(H) the space of linear operators on H. Let

T (t)
SU(d)

=
∫
U∈SU(d) U

⊗t(·)(U†)⊗t be the t-th fold moment superoperator (or twirl)

from L(H) −→ L(H), and T
(t)
SU(d)

= vecT (t)
SU(d)

= EU [U⊗t ⊗ Ū⊗t] its vectorization.

It is a well known fact that given a rep R of group G , one can explicitly write a
projector into any isotypic α via

Πα =
dα

|G |
∑
g∈G

χλ(g)R(g) (19)

Instantiation24 of this expression for G = SU(d), R(U) = U⊗t ⊗ Ū⊗t and α = triv

(with χα(U) = 1) takes us to T
(t)
G , meaning T

(t)
SU(d)

is the orthogonal projector onto

L(H)SU(d), the trivial isotypic of the SU(d)-module L(H) – the commutant of
U⊗t ⊗ Ū⊗t .

24Here, χα(g) = Tr[Rα(g)] is the character of irrep α. Similar expression for Lie groups replaces the uniform

probability p(g) = 1
|G| by the Haar measure pHaar(U).

Apps of SW duality: Computing Moments of unitary designs

A clear application of SW duality is in computing moments of Haar random unitaries
or designs.

Let H = (Cd)⊗t and L(H) the space of linear operators on H. Let

T (t)
SU(d)

=
∫
U∈SU(d) U

⊗t(·)(U†)⊗t be the t-th fold moment superoperator (or twirl)

from L(H) −→ L(H), and T
(t)
SU(d)

= vecT (t)
SU(d)

= EU [U⊗t ⊗ Ū⊗t] its vectorization.

It is a well known fact that given a rep R of group G , one can explicitly write a
projector into any isotypic α via

Πα =
dα

|G |
∑
g∈G

χλ(g)R(g) (19)

Instantiation24 of this expression for G = SU(d), R(U) = U⊗t ⊗ Ū⊗t and α = triv

(with χα(U) = 1) takes us to T
(t)
G , meaning T

(t)
SU(d)

is the orthogonal projector onto

L(H)SU(d), the trivial isotypic of the SU(d)-module L(H) – the commutant of
U⊗t ⊗ Ū⊗t .

24Here, χα(g) = Tr[Rα(g)] is the character of irrep α. Similar expression for Lie groups replaces the uniform

probability p(g) = 1
|G| by the Haar measure pHaar(U).

Moment Computations

Since T
(t)
SU(d)

is a projector onto commutant L(H)SU(d) and SW provides an explicit

(non-orthogonal) basis

L(H)SU(d) = span{P(σ)}σ∈St (20)

in terms of t! permutations, we can use this to expand25

T
(t)
SU(d)

=
1

d t

∑
σ,π∈St

Wσ,π |P(π)
〉〉〈〈

P(σ)| (21)

where Wσ,π are coefficients that come from inversion of the Gram matrix of {P(σ)}
basis26. This approach goes by the fancy name of Weingarten Calculus, but its just
using a duality to expand the commutant.

Some applications of moment computation:

1. t = 2: Barren Plateau.

2. t = 3: Classical Shadows.

3. t ≥ 3: Gaussian Processes.

25We write a vectorized O ∈ L(H) as
∣∣O〉〉

.
26For example, in the case t = 2 the Weingarten matrix W (Gram’s inverse, such that Wπσ = [W]π,σ) is

W = 1
d2−1

(
1 −1/d

−1/d 1

)
for {P(()), P((12)}.

Barren Plateau

For example, let lU =
〈〈
O
∣∣U∣∣ρ〉〉 be the cost function of a VQA and suppose we

initialize random parameters that roughly correspond to U sampled from a 2-design in
SU(d). We can compute the variance

VarU [lU] ≤ EU [l2U] =
〈〈
O⊗2

∣∣T (t)
SU(d)

∣∣ρ⊗2
〉〉

(22)

∼
1

d2

∑
σ∈S2

〈〈
O⊗2|P(σ)

〉〉〈〈
P(σ)|ρ⊗2

〉〉
(23)

=
1

d2
Tr[O2]Tr[ρ2] ∈ O(1/d) (24)

Thus, we find exponential concentration of the cost function – a barren plateau.

The Schur-Weyl duality: Irrep version
The irrep version of Schur-Weyl duality is a statement about the representation of
(Cd)⊗n as a G = SU(d) × Sn-module.

It asserts that the only irreps of G that appear are ’diagonal’ (of the form (λ, λ)),
namely Vλ

SU(d)
⊗ Vλ

Sn
, and they do so with multiplicity one:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Vλ

Sn
(25)

Lets absorb this. There are two natural bases for (Cd)⊗n. On one side, the product

basis {|x⟩}x∈[d]n . On another, the Schur basis27
{
|λ,T ,M⟩

}
λ⊢n

l(λ)≤d,T ,M∈λ
that

maximally block-diagonalizes the action of G :

(U, σ) · |λ,T ,M⟩ = |λ, σ · T ,U ·M⟩ (26)

Lets restrict G to each of the normal subgroups:

• As a SU(d)-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Cdim(Vλ

Sn
) (27)

• As a Sn-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Cdim(Vλ
SU(d)) ⊗ Vλ

Sn
(28)

27The ’Fourier’ basis for this rep R(U, σ) = Q(U)P(σ) of G = SU(d) × Sn

The Schur-Weyl duality: Irrep version
The irrep version of Schur-Weyl duality is a statement about the representation of
(Cd)⊗n as a G = SU(d) × Sn-module.
It asserts that the only irreps of G that appear are ’diagonal’ (of the form (λ, λ)),
namely Vλ

SU(d)
⊗ Vλ

Sn
, and they do so with multiplicity one:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Vλ

Sn
(25)

Lets absorb this. There are two natural bases for (Cd)⊗n. On one side, the product

basis {|x⟩}x∈[d]n . On another, the Schur basis27
{
|λ,T ,M⟩

}
λ⊢n

l(λ)≤d,T ,M∈λ
that

maximally block-diagonalizes the action of G :

(U, σ) · |λ,T ,M⟩ = |λ, σ · T ,U ·M⟩ (26)

Lets restrict G to each of the normal subgroups:

• As a SU(d)-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Cdim(Vλ

Sn
) (27)

• As a Sn-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Cdim(Vλ
SU(d)) ⊗ Vλ

Sn
(28)

27The ’Fourier’ basis for this rep R(U, σ) = Q(U)P(σ) of G = SU(d) × Sn

The Schur-Weyl duality: Irrep version
The irrep version of Schur-Weyl duality is a statement about the representation of
(Cd)⊗n as a G = SU(d) × Sn-module.
It asserts that the only irreps of G that appear are ’diagonal’ (of the form (λ, λ)),
namely Vλ

SU(d)
⊗ Vλ

Sn
, and they do so with multiplicity one:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Vλ

Sn
(25)

Lets absorb this. There are two natural bases for (Cd)⊗n. On one side, the product

basis {|x⟩}x∈[d]n . On another, the Schur basis27
{
|λ,T ,M⟩

}
λ⊢n

l(λ)≤d,T ,M∈λ
that

maximally block-diagonalizes the action of G :

(U, σ) · |λ,T ,M⟩ = |λ, σ · T ,U ·M⟩ (26)

Lets restrict G to each of the normal subgroups:

• As a SU(d)-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Cdim(Vλ

Sn
) (27)

• As a Sn-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Cdim(Vλ
SU(d)) ⊗ Vλ

Sn
(28)

27The ’Fourier’ basis for this rep R(U, σ) = Q(U)P(σ) of G = SU(d) × Sn

The Schur-Weyl duality: Irrep version
The irrep version of Schur-Weyl duality is a statement about the representation of
(Cd)⊗n as a G = SU(d) × Sn-module.
It asserts that the only irreps of G that appear are ’diagonal’ (of the form (λ, λ)),
namely Vλ

SU(d)
⊗ Vλ

Sn
, and they do so with multiplicity one:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Vλ

Sn
(25)

Lets absorb this. There are two natural bases for (Cd)⊗n. On one side, the product

basis {|x⟩}x∈[d]n . On another, the Schur basis27
{
|λ,T ,M⟩

}
λ⊢n

l(λ)≤d,T ,M∈λ
that

maximally block-diagonalizes the action of G :

(U, σ) · |λ,T ,M⟩ = |λ, σ · T ,U ·M⟩ (26)

Lets restrict G to each of the normal subgroups:

• As a SU(d)-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Cdim(Vλ

Sn
) (27)

• As a Sn-module:

(Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Cdim(Vλ
SU(d)) ⊗ Vλ

Sn
(28)

27The ’Fourier’ basis for this rep R(U, σ) = Q(U)P(σ) of G = SU(d) × Sn

From irreps to commutant

Supose we got a G -module H = span{|i⟩}dim(H)
i=1 and we know its decomposition is

H ∼=
⊕
α

Cmα ⊗ Vα
G =

⊕
α

mα⊕
iα=1

Vα,i
G (29)

We can then find the decomposition of the space of linear operators

L(H) ∼= H⊗ H̄ = span{|i⟩⟨j |}dim(H)
i,j=1 , as

L(H) ∼=
(⊕

α

mα⊕
iα=1

Vα,i
G

)
⊗

(⊕
β

mα⊕
jβ=1

Vβ,j
G

)
(30)

=
(⊕

α=β

mα⊕
iα,jα=1

Vα,i
G ⊗ Vα,j

G

)
⊕

(⊕
α ̸=β

mα,mβ⊕
iα,jβ=1

Vα,i
G ⊗ Vβ,j

G

)
(31)

A result known as Schur’s Lemma asserts that only way trivial irreps appear in the

tensor product of two irreps is iff the two irreps are dual to each other (and in such
case appear with mulp one).
Then

L(H)G ∼=
⊕
α=β

mα⊕
iα,jα=1

(Vα,i
G ⊗ Vα,j

G)G (32)

That is, for each pair of copies of α in H there is a G -invariant operator

(Vα,i
G ⊗ Vα,j

G)G in L(H)G .

From irreps to commutant

Supose we got a G -module H = span{|i⟩}dim(H)
i=1 and we know its decomposition is

H ∼=
⊕
α

Cmα ⊗ Vα
G =

⊕
α

mα⊕
iα=1

Vα,i
G (29)

We can then find the decomposition of the space of linear operators

L(H) ∼= H⊗ H̄ = span{|i⟩⟨j |}dim(H)
i,j=1 , as

L(H) ∼=
(⊕

α

mα⊕
iα=1

Vα,i
G

)
⊗

(⊕
β

mα⊕
jβ=1

Vβ,j
G

)
(30)

=
(⊕

α=β

mα⊕
iα,jα=1

Vα,i
G ⊗ Vα,j

G

)
⊕

(⊕
α ̸=β

mα,mβ⊕
iα,jβ=1

Vα,i
G ⊗ Vβ,j

G

)
(31)

A result known as Schur’s Lemma asserts that only way trivial irreps appear in the

tensor product of two irreps is iff the two irreps are dual to each other (and in such
case appear with mulp one).

Then

L(H)G ∼=
⊕
α=β

mα⊕
iα,jα=1

(Vα,i
G ⊗ Vα,j

G)G (32)

That is, for each pair of copies of α in H there is a G -invariant operator

(Vα,i
G ⊗ Vα,j

G)G in L(H)G .

From irreps to commutant

Supose we got a G -module H = span{|i⟩}dim(H)
i=1 and we know its decomposition is

H ∼=
⊕
α

Cmα ⊗ Vα
G =

⊕
α

mα⊕
iα=1

Vα,i
G (29)

We can then find the decomposition of the space of linear operators

L(H) ∼= H⊗ H̄ = span{|i⟩⟨j |}dim(H)
i,j=1 , as

L(H) ∼=
(⊕

α

mα⊕
iα=1

Vα,i
G

)
⊗

(⊕
β

mα⊕
jβ=1

Vβ,j
G

)
(30)

=
(⊕

α=β

mα⊕
iα,jα=1

Vα,i
G ⊗ Vα,j

G

)
⊕

(⊕
α ̸=β

mα,mβ⊕
iα,jβ=1

Vα,i
G ⊗ Vβ,j

G

)
(31)

A result known as Schur’s Lemma asserts that only way trivial irreps appear in the

tensor product of two irreps is iff the two irreps are dual to each other (and in such
case appear with mulp one).
Then

L(H)G ∼=
⊕
α=β

mα⊕
iα,jα=1

(Vα,i
G ⊗ Vα,j

G)G (32)

That is, for each pair of copies of α in H there is a G -invariant operator

(Vα,i
G ⊗ Vα,j

G)G in L(H)G .

From irreps to commutant

Lets use irrep SW duality to get the commutant. We have

H = (Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Cdim(Vλ

Sn
) (33)

=
⊕
λ⊢n

l(λ)≤d

⊕
T∈λ

Vλ,T
SU(d)

(34)

where T index copies and Vλ,T
SU(d)

= span{|λ,T ,M⟩}M∈λ.

Then, each one-dimensional trivial irrep (Vλ,T1
SU(d)

⊗ Vλ,T2
SU(d)

) ∈ L(H)SU(d) is spanned by

the operator

Bλ,T1,T2
=

1

dim(Vλ
SU(d)

)

∑
M∈λ

|λ,T1,M⟩⟨λ,T2,M| (35)

We arrive at a new basis (now orthonormal so no need for Weingarten Calculus) for
the commutant

L(H)SU(d) = span{P(σ)}σ∈Sn = span{Bλ,T1,T2
}λ,(T1,T2)∈λ . (36)

From irreps to commutant

Lets use irrep SW duality to get the commutant. We have

H = (Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Cdim(Vλ

Sn
) (33)

=
⊕
λ⊢n

l(λ)≤d

⊕
T∈λ

Vλ,T
SU(d)

(34)

where T index copies and Vλ,T
SU(d)

= span{|λ,T ,M⟩}M∈λ.

Then, each one-dimensional trivial irrep (Vλ,T1
SU(d)

⊗ Vλ,T2
SU(d)

) ∈ L(H)SU(d) is spanned by

the operator

Bλ,T1,T2
=

1

dim(Vλ
SU(d)

)

∑
M∈λ

|λ,T1,M⟩⟨λ,T2,M| (35)

We arrive at a new basis (now orthonormal so no need for Weingarten Calculus) for
the commutant

L(H)SU(d) = span{P(σ)}σ∈Sn = span{Bλ,T1,T2
}λ,(T1,T2)∈λ . (36)

From irreps to commutant

Lets use irrep SW duality to get the commutant. We have

H = (Cd)⊗n ∼=
⊕
λ⊢n

l(λ)≤d

Vλ
SU(d) ⊗ Cdim(Vλ

Sn
) (33)

=
⊕
λ⊢n

l(λ)≤d

⊕
T∈λ

Vλ,T
SU(d)

(34)

where T index copies and Vλ,T
SU(d)

= span{|λ,T ,M⟩}M∈λ.

Then, each one-dimensional trivial irrep (Vλ,T1
SU(d)

⊗ Vλ,T2
SU(d)

) ∈ L(H)SU(d) is spanned by

the operator

Bλ,T1,T2
=

1

dim(Vλ
SU(d)

)

∑
M∈λ

|λ,T1,M⟩⟨λ,T2,M| (35)

We arrive at a new basis (now orthonormal so no need for Weingarten Calculus) for
the commutant

L(H)SU(d) = span{P(σ)}σ∈Sn = span{Bλ,T1,T2
}λ,(T1,T2)∈λ . (36)

BPs Again

Proceding similarly in the general case one can derive, for arbitrary dynamical Lie
group G and decomposition of L =

⊕
α Cmα ⊗ Vα

G :

EU∼G [l2U] =
∑
α

mα∑
i,j=1

⟨ρα,i , ρα,j ⟩⟨Oα,i ,Oα,j ⟩
dim(Vα

G)
(37)

Terms are inversely weighted by the dimension of irreps, so having component in large
irreps is paid with more concentration.

In the special case O ∈ g we have

EU∼G [l2U] =
⟨ρg, ρg⟩⟨O,O⟩

dim(g)
(38)

so Var is propto 1/ dim(g) as stated in an old conjecture [Lar+21]. This proof was
simultaneously derived in [Rag+23] and [Fon+23].

BPs Again

Proceding similarly in the general case one can derive, for arbitrary dynamical Lie
group G and decomposition of L =

⊕
α Cmα ⊗ Vα

G :

EU∼G [l2U] =
∑
α

mα∑
i,j=1

⟨ρα,i , ρα,j ⟩⟨Oα,i ,Oα,j ⟩
dim(Vα

G)
(37)

Terms are inversely weighted by the dimension of irreps, so having component in large
irreps is paid with more concentration.
In the special case O ∈ g we have

EU∼G [l2U] =
⟨ρg, ρg⟩⟨O,O⟩

dim(g)
(38)

so Var is propto 1/ dim(g) as stated in an old conjecture [Lar+21]. This proof was
simultaneously derived in [Rag+23] and [Fon+23].

Apps of SW duality: Quantum Schur Transform

Consider a quantum system given by n qudit registers, H = (Cd)⊗n. Suppose we want
to implement a transformation mapping the computational basis {|x⟩}x∈[d]n to the
Schur basis.

Efficient compilations of such transformation into quantum circuits have been
developed – Quantum Schur Transforms (QST)– with complexity being poly(d , n) 28.
The default method proceeds by a cascade of Clebsch-Gordan Transforms, which
essentially consists of the coupling of an arbitrary SU(d) irrep Vλ

λ with a standard one
V

SU(d)
.

App: spectrum estimation [BCH06]: Given ρ ∈ End(Cd) such that ρ =
∑

i ri |ri ⟩⟨ri |,
QST gives an algorithm to estimate the vector r = (ri). Initialize n copies of ρ, apply
QST and measure the λ register – a routine called weak Schur sampling (WSS)–
obtaining some partition λ with probability p(λ) = Tr[ρ⊗nΠλ] .
Via cyclicity of trace, p(λ) depends only on the spectrum of ρ. Output29

r̂ = (λ1/n, · · · , λn/n). Note30.

28There are claims [CHW06] that a QST efficient in log(d) should be possible, and some proposals [Kro19] via
induced Sn-reps.

29In the limit of n >> 1 this is optimal estimator.
30When all we want is to sample irrep register λ, we dont necesarilly need specific FT for given rep R of G – we

sometimes can use regular G -QFT together with a controlled operation similar to the one in phase-estimation algo–
known as Generalized Phase Estimation [BCH06]. In the case of WSS we can choose to use Sn-QFT as opposed
to QST, with potential exponential-in-d savings.

Apps of SW duality: Quantum Schur Transform

Consider a quantum system given by n qudit registers, H = (Cd)⊗n. Suppose we want
to implement a transformation mapping the computational basis {|x⟩}x∈[d]n to the
Schur basis.

Efficient compilations of such transformation into quantum circuits have been
developed – Quantum Schur Transforms (QST)– with complexity being poly(d , n) 28.
The default method proceeds by a cascade of Clebsch-Gordan Transforms, which
essentially consists of the coupling of an arbitrary SU(d) irrep Vλ

λ with a standard one
V

SU(d)
.

App: spectrum estimation [BCH06]: Given ρ ∈ End(Cd) such that ρ =
∑

i ri |ri ⟩⟨ri |,
QST gives an algorithm to estimate the vector r = (ri). Initialize n copies of ρ, apply
QST and measure the λ register – a routine called weak Schur sampling (WSS)–
obtaining some partition λ with probability p(λ) = Tr[ρ⊗nΠλ] .
Via cyclicity of trace, p(λ) depends only on the spectrum of ρ. Output29

r̂ = (λ1/n, · · · , λn/n). Note30.

28There are claims [CHW06] that a QST efficient in log(d) should be possible, and some proposals [Kro19] via
induced Sn-reps.

29In the limit of n >> 1 this is optimal estimator.
30When all we want is to sample irrep register λ, we dont necesarilly need specific FT for given rep R of G – we

sometimes can use regular G -QFT together with a controlled operation similar to the one in phase-estimation algo–
known as Generalized Phase Estimation [BCH06]. In the case of WSS we can choose to use Sn-QFT as opposed
to QST, with potential exponential-in-d savings.

Apps of SW duality: Quantum Schur Transform

Consider a quantum system given by n qudit registers, H = (Cd)⊗n. Suppose we want
to implement a transformation mapping the computational basis {|x⟩}x∈[d]n to the
Schur basis.

Efficient compilations of such transformation into quantum circuits have been
developed – Quantum Schur Transforms (QST)– with complexity being poly(d , n) 28.
The default method proceeds by a cascade of Clebsch-Gordan Transforms, which
essentially consists of the coupling of an arbitrary SU(d) irrep Vλ

λ with a standard one
V

SU(d)
.

App: spectrum estimation [BCH06]: Given ρ ∈ End(Cd) such that ρ =
∑

i ri |ri ⟩⟨ri |,
QST gives an algorithm to estimate the vector r = (ri). Initialize n copies of ρ, apply
QST and measure the λ register – a routine called weak Schur sampling (WSS)–
obtaining some partition λ with probability p(λ) = Tr[ρ⊗nΠλ] .

Via cyclicity of trace, p(λ) depends only on the spectrum of ρ. Output29

r̂ = (λ1/n, · · · , λn/n). Note30.

28There are claims [CHW06] that a QST efficient in log(d) should be possible, and some proposals [Kro19] via
induced Sn-reps.

29In the limit of n >> 1 this is optimal estimator.
30When all we want is to sample irrep register λ, we dont necesarilly need specific FT for given rep R of G – we

sometimes can use regular G -QFT together with a controlled operation similar to the one in phase-estimation algo–
known as Generalized Phase Estimation [BCH06]. In the case of WSS we can choose to use Sn-QFT as opposed
to QST, with potential exponential-in-d savings.

Apps of SW duality: Quantum Schur Transform

Consider a quantum system given by n qudit registers, H = (Cd)⊗n. Suppose we want
to implement a transformation mapping the computational basis {|x⟩}x∈[d]n to the
Schur basis.

Efficient compilations of such transformation into quantum circuits have been
developed – Quantum Schur Transforms (QST)– with complexity being poly(d , n) 28.
The default method proceeds by a cascade of Clebsch-Gordan Transforms, which
essentially consists of the coupling of an arbitrary SU(d) irrep Vλ

λ with a standard one
V

SU(d)
.

App: spectrum estimation [BCH06]: Given ρ ∈ End(Cd) such that ρ =
∑

i ri |ri ⟩⟨ri |,
QST gives an algorithm to estimate the vector r = (ri). Initialize n copies of ρ, apply
QST and measure the λ register – a routine called weak Schur sampling (WSS)–
obtaining some partition λ with probability p(λ) = Tr[ρ⊗nΠλ] .
Via cyclicity of trace, p(λ) depends only on the spectrum of ρ. Output29

r̂ = (λ1/n, · · · , λn/n). Note30.

28There are claims [CHW06] that a QST efficient in log(d) should be possible, and some proposals [Kro19] via
induced Sn-reps.

29In the limit of n >> 1 this is optimal estimator.
30When all we want is to sample irrep register λ, we dont necesarilly need specific FT for given rep R of G – we

sometimes can use regular G -QFT together with a controlled operation similar to the one in phase-estimation algo–
known as Generalized Phase Estimation [BCH06]. In the case of WSS we can choose to use Sn-QFT as opposed
to QST, with potential exponential-in-d savings.

Apps of SW duality: Quantum Schur Transform

Consider a quantum system given by n qudit registers, H = (Cd)⊗n. Suppose we want
to implement a transformation mapping the computational basis {|x⟩}x∈[d]n to the
Schur basis.

Efficient compilations of such transformation into quantum circuits have been
developed – Quantum Schur Transforms (QST)– with complexity being poly(d , n) 28.
The default method proceeds by a cascade of Clebsch-Gordan Transforms, which
essentially consists of the coupling of an arbitrary SU(d) irrep Vλ

λ with a standard one
V

SU(d)
.

App: spectrum estimation [BCH06]: Given ρ ∈ End(Cd) such that ρ =
∑

i ri |ri ⟩⟨ri |,
QST gives an algorithm to estimate the vector r = (ri). Initialize n copies of ρ, apply
QST and measure the λ register – a routine called weak Schur sampling (WSS)–
obtaining some partition λ with probability p(λ) = Tr[ρ⊗nΠλ] .
Via cyclicity of trace, p(λ) depends only on the spectrum of ρ. Output29

r̂ = (λ1/n, · · · , λn/n). Note30.

28There are claims [CHW06] that a QST efficient in log(d) should be possible, and some proposals [Kro19] via
induced Sn-reps.

29In the limit of n >> 1 this is optimal estimator.
30When all we want is to sample irrep register λ, we dont necesarilly need specific FT for given rep R of G – we

sometimes can use regular G -QFT together with a controlled operation similar to the one in phase-estimation algo–
known as Generalized Phase Estimation [BCH06]. In the case of WSS we can choose to use Sn-QFT as opposed
to QST, with potential exponential-in-d savings.

Other dualities

A non-extensive enumeration of dualities includes:

1. Orthogonal and Symplectic SW31: States that the commutant of the t-fold
standard rep of O(d) and SP(d), subgroups of U(d), is given by Brauer algebras
Bt(d) and Bt(d), an extension of St algebra that allows to ’connect stuff on the
same side’.

2. Mixed SW-duality32: Similar to SW duality but we consider the SU(d) rep
Qp,q = U⊗p ⊗ Ū⊗q . Then

(Cd)⊗p+q ∼=
⊕
γ

V γ
SU(d)

⊗ V γ

Bd
p,q

(39)

where Bd
p,q is a superalgebra of Sp+q called the walled Brauer algebra.

3. Howe duality: for tensors powers of particle-preserving (PP) and non-PP free
fermionic and free bosonic unitaries.

4. Clifford duality: the commutant of U ∈ Cld ⊂ U(d) tensor t is given by (i)
discrete orthogonal transformations and (ii) self-orthogonal CSS code projectors33

5. Regular Rep: Left and Right regular reps are self dual, this is the reason why
multiplicity of each irrep α in reg rep is its dimension! G ∼=

⊕
α Vα

G ⊗ Vα
G .

31See [GLC23].
32See [GOB23,Ngu23].
33What on earth’s that? See David Gross’s papers.

Summary

We’ve introduce RT and outline a number of applications.

What you can do with RT:

1. Find new transforms

2. Find applications of existing transforms

3. Compute moments of random group actions

Hope this helps for some of the talks during the week!

Summary

We’ve introduce RT and outline a number of applications.

What you can do with RT:

1. Find new transforms

2. Find applications of existing transforms

3. Compute moments of random group actions

Hope this helps for some of the talks during the week!

Thank You!

Thanks for your attention!

Let me mention some of my awesome collaborators in the audience: Marco, Lukasz,
Diego, Paolo, Pablo, Andy, Fred, Vojtech, Zoe, Supanut, Matt, Max.

Advertisement Warning: Soon open applications for our Quantum Computing
Summer School at Los Alamos (10 weeks, from June to August 2025)

Link not there yet but will be soon! We will post

Martin Larocca
@MartinLaroo

Marco Cerezo
@MvsCerezo

Thank You!

Thanks for your attention!

Let me mention some of my awesome collaborators in the audience: Marco, Lukasz,
Diego, Paolo, Pablo, Andy, Fred, Vojtech, Zoe, Supanut, Matt, Max.

Advertisement Warning: Soon open applications for our Quantum Computing
Summer School at Los Alamos (10 weeks, from June to August 2025)

Link not there yet but will be soon! We will post

Martin Larocca
@MartinLaroo

Marco Cerezo
@MvsCerezo

Thank You!

Thanks for your attention!

Let me mention some of my awesome collaborators in the audience: Marco, Lukasz,
Diego, Paolo, Pablo, Andy, Fred, Vojtech, Zoe, Supanut, Matt, Max.

Advertisement Warning: Soon open applications for our Quantum Computing
Summer School at Los Alamos (10 weeks, from June to August 2025)

Link not there yet but will be soon! We will post

Martin Larocca
@MartinLaroo

Marco Cerezo
@MvsCerezo

References

BCH06 : Bacon, Dave, Isaac L. Chuang, and Aram W. Harrow. ”Efficient quantum circuits for Schur
and Clebsch-Gordan transforms.” Physical review letters 97.17 (2006): 170502.

CHW06 : Childs, Andrew M., Aram W. Harrow, and Pawe l Wocjan. ”Weak Fourier-Schur sampling,
the hidden subgroup problem, and the quantum collision problem.” STACS 2007: 24th
Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February
22-24, 2007. Proceedings 24. Springer Berlin Heidelberg, 2007.

Kro19 : Krovi, Hari. ”An efficient high dimensional quantum Schur transform.” Quantum 3 (2019):
122.

Lar+21 : Larocca, Martin, et al. ”Diagnosing barren plateaus with tools from quantum optimal
control.” Quantum 6 (2022): 824.

GBO23 : Grinko, Dmitry, Adam Burchardt, and Maris Ozols. ”Gelfand-Tsetlin basis for partially
transposed permutations, with applications to quantum information.” arXiv preprint
arXiv:2310.02252 (2023).

Ngu23 : Nguyen, Quynh T. ”The mixed Schur transform: efficient quantum circuit and
applications.” arXiv preprint arXiv:2310.01613 (2023).

GLC23 : Garćıa-Mart́ın, Diego, Martin Larocca, and Marco Cerezo. ”Deep quantum neural networks
form Gaussian processes.” arXiv preprint arXiv:2305.09957 (2023).

Rag+23 : Ragone, Michael, et al. ”A unified theory of barren plateaus for deep parametrized
quantum circuits.” Nature Communications 15, 7172 (2024).

Fon+23 : Fontana, Enrico, et al. ”The Adjoint Is All You Need: Characterizing Barren Plateaus in
Quantum Ansätze.” arXiv preprint arXiv:2309.07902 (2023).

LH24 : Larocca, Martin, and Vojtech Havlicek. ”Quantum Algorithms for Representation-Theoretic
Multiplicities.” arXiv preprint arXiv:2407.17649 (2024).

	What is Quantum Computing
	What is Rep Theory and Why do we need it?

