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Facilitating advancements in quantum
computing

The along with In

, opens the path to fault-tolerant computations using
quantum error correction (QEC) with ensembles of qubits. These improvements
require complementary classical compute in the form of FPGA-based pulse-

processing instrumentation and high-powered compute like GPUs.

2 Why do we need real-time hybrid
compute?

Fault-tolerant quantum computation requires real-time, mid-circuit decoding of
logical qubit states by observing ancilla qubit states to eliminate errors over
the lifetime of a quantum algorithm, necessitating the tight integration of classical
and quantum compute. In addition to QEC, multi-qubit systems require precise
control over numerous degrees of freedom to maintain fidelities below error-
correction thresholds, including repeated re-calibration and low-latency feedback
routines to combat high-frequency noise.

So, real-time classical compute plays a critical role in enabling both:
1. Low-latency, feedback-based
2. Real-time decoding for

of logical qubit states.

Model-free reinforcement learning for
quantum optimal control in hardware

We used a control system combining the OPX controller,
with an Grace Hopper Superchip to optimize the control of quantum NOT
gate on a 5Q Novera Quantum Computer, in the (Israeli Quantum

Computing Center).
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Low-latency communication between the GH and OPX systems was achieved via
the , enabling data transfer from the FPGA-based
pulse-programming language QUA to the GH superchip in wunder 4
microseconds, round-trip!
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used strikes a strong balance
between exploration and
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exploitation by applying random
action noise and delaying network
updates for early iterations.
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Real-time multi-parameter optimization of
a quantum NOT-gate using RL

Using the model-free reinforcement learning protocol described,

, the most straightforward being the
amplitude of the gate-pulse. In the following demonstration, the agent provides
the OPX with a normalized amplitude, which is then used to modulate a NOT-gate
pulse waveform in real-time on the FPGA. Then, the qubit is measured, and the
state-projection reward is returned to the agent to update the policy and learn.
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The communication overhead of the DGX is so low (~4us round-trip) that it is no
longer the bottleneck of the calibration routine, .
Each "experience”, including action/reward communication between the GH and
OPX, qubit operation, readout, and policy network update, takes on average
~2.5ms using the open-source RL protocol. This is encouragingly less than the
total expected communication overhead using ethernet.

The model is initialized with a
random initial amplitude, and all
other qubit parameters are
calibrated. The agent IS
constrained to explore between
0-2 times the known, correct NOT-
gate amplitude. With network
updates only every 8 iterations,
the model successfully converges
to the known amplitude in under
400 iterations, totaling ~1s.
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The action space was expanded to include
the qubit frequency as well. The multi-
dimensional optimization successfully
converged in ~1000 iterations to achieve the
maximum possible reward. Despite adding
another dimension, the NVIDIA Hopper GPU
remains heavily under-utilized, indicating the
ability to scale to much larger parameter
spaces. The remaining bottleneck is the
communication between the CPU and GPU
of the GH due to the open-source protocol's
Implementation in Python.
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5 Larger-scale applications

Future applications of the DGX quantum platform aim to leverage the full power
of the GH superchip and benefit fault-tolerant quantum computing at larger
scales, including:

» General, real-time single- and

» Real-time for quantum error correction.
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