Real-time Quantum Control with

Reinforcement Learning
Integrating QPU and GPU using DGX Quantum

Dean Poulos', Ramon Szmuk!, Oded Wertheim!, Avishai Ziv!, Benedikt Dorschner?, Sam Stanwyck?,
Jin-Sung Kim?#, Yonatan Cohen’
1Quantum Machines, 2NVIDIA

Facilitating advancements in quantum
computing

The along with In

, opens the path to fault-tolerant computations using
quantum error correction (QEC) with ensembles of qubits. These improvements
require complementary classical compute in the form of FPGA-based pulse-

processing instrumentation and high-powered compute like GPUs.

2 Why do we need real-time hybrid
compute?

Fault-tolerant quantum computation requires real-time, mid-circuit decoding of
logical qubit states by observing ancilla qubit states to eliminate errors over
the lifetime of a quantum algorithm, necessitating the tight integration of classical
and quantum compute. In addition to QEC, multi-qubit systems require precise
control over numerous degrees of freedom to maintain fidelities below error-
correction thresholds, including repeated re-calibration and low-latency feedback
routines to combat high-frequency noise.

So, real-time classical compute plays a critical role in enabling both:
1. Low-latency, feedback-based
2. Real-time decoding for

of logical qubit states.

Model-free reinforcement learning for
quantum optimal control in hardware

We used a control system combining the OPX controller,
with an Grace Hopper Superchip to optimize the control of quantum NOT
gate on a 5Q Novera Quantum Computer, in the (Israeli Quantum

Computing Center).

Reward
| 1)-state projection

Environment

A
| |

. | : =y T measure(qubit) .
= =l “-— “ 1 | o o o oo o it | A
OP-NIC 080 e %on s o o® : _
o2 bloaii ozt o2 o % n B o 0n B Yoo Y on plaY(T[pU].SG) . .
Rigetti
NVIDIA GraceHopper . Quantum Machines 50 Ship
Action

OPX1000

n—pulse parameter

Low-latency communication between the GH and OPX systems was achieved via
the , enabling data transfer from the FPGA-based
pulse-programming language QUA to the GH superchip in wunder 4
microseconds, round-trip!

...

Actor Network

We use the from

§ I TSR

[D errorupdate] | [

StableBaselines3, making use of

DPG update | |

T

OpenAl’s open-source RL Sz | Sz
implementations in and S -5~
, to optimize the continuous DI

parameter space of our qubit. The
implementation of TD3 that was

fiEsS

...

o #s) Xa |
@" 'é > Environment !

....................................

used strikes a strong balance
between exploration and

Replay Buffer

Store samples

exploitation by applying random
action noise and delaying network
updates for early iterations.

QUANTUM
MACHINES

Figure by Liu et. al, 2022

<A NVIDIA

Real-time multi-parameter optimization of
a quantum NOT-gate using RL

Using the model-free reinforcement learning protocol described,

, the most straightforward being the
amplitude of the gate-pulse. In the following demonstration, the agent provides
the OPX with a normalized amplitude, which is then used to modulate a NOT-gate
pulse waveform in real-time on the FPGA. Then, the qubit is measured, and the
state-projection reward is returned to the agent to update the policy and learn.

Repeat for N shots
5 ps/shot
|

poll play(m) measure() stream poll

Rigetti 5Q Chip

it
...........
.............
Rl i adiagadiag:
o BRile B Rie ibulie AR, AN, s, EE, 2
el etk ek Fek R ol TV ¥ g ord
Rttt Bl R R L
30

> a3
..............

QM OPX1000

|
Send Reward
~5 Us

Send Actions
~5 Us

env.step()

Send Reward

Store exp. ...repeats

1

Repeat for M "Experiences”

NVIDIA
GraceHopper Send New

Actions

Store in |SEEEEN
buffer o Update network

GPU
ey

The communication overhead of the DGX is so low (~4us round-trip) that it is no
longer the bottleneck of the calibration routine, .
Each "experience”, including action/reward communication between the GH and
OPX, qubit operation, readout, and policy network update, takes on average
~2.5ms using the open-source RL protocol. This is encouragingly less than the
total expected communication overhead using ethernet.

The model is initialized with a
random initial amplitude, and all
other qubit parameters are
calibrated. The agent IS
constrained to explore between
0-2 times the known, correct NOT-
gate amplitude. With network
updates only every 8 iterations,
the model successfully converges
to the known amplitude in under
400 iterations, totaling ~1s.

amplitude vs. iteration

----- Learning starts

=== Learned optimal amplitude
TD3

action noise

amplitude [arb.]

0.00 1 !

0 50 100 150 200 250 300 350 400
¢ p iterations [#]
TD3

no-learning phase

The action space was expanded to include
the qubit frequency as well. The multi-
dimensional optimization successfully
converged in ~1000 iterations to achieve the
maximum possible reward. Despite adding
another dimension, the NVIDIA Hopper GPU
remains heavily under-utilized, indicating the
ability to scale to much larger parameter
spaces. The remaining bottleneck is the
communication between the CPU and GPU
of the GH due to the open-source protocol's
Implementation in Python.

\\\
-\‘M

5 Larger-scale applications

Future applications of the DGX quantum platform aim to leverage the full power
of the GH superchip and benefit fault-tolerant quantum computing at larger
scales, including:

» General, real-time single- and

» Real-time for quantum error correction.

|ICLCC rigett

keration

	Slide 1: Real-time Quantum Control with Reinforcement Learning Integrating QPU and GPU using DGX Quantum

