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Quantum Krylov subspace diagonalization (QKSD) is
an emerging method used in place of quantum phase
estimation in the early fault-tolerant era. Within the
quantum Krylov subspace, the ansatz is defined as
a trigonometric polynomial of Hamiltonian |Ψ(c)⟩ =∑n−1

k=0 cke
−iĤk |ϕ0⟩, where c ∈ Cn, |ϕ0⟩ is a reference

state with a finite overlap with the ground state, and n
is the dimension of the Krylov subspace. This ansatz is
appealing because of its exponentially fast convergence
to the ground state. Once the projection onto the sub-
space is performed by quantum computers, the classical
diagonalization becomes feasible, as the dimension grows
only logarithmically with the inverse of accuracy.

In contrast to the classical Krylov subspace diagonal-
ization (KSD) or the Lanczos method, QKSD leverages
quantum computers to efficiently estimate the eigenval-
ues of large Hamiltonians through a faster Krylov pro-
jection. However, unlike classical KSD—where machine
precision is the primary concern —QKSD is inherently
subject to sampling errors that decay more slowly. Given
the limitation of the early fault-tolerant quantum de-
vice, a simple amplitude estimation algorithm, such as
Hadamard test, is employed. These errors are bounded
by the standard quantum limits of ϵ = O(1/

√
M), which

are less favorable than the Heisenberg limit. Moreover,
due to the difficulty establishing an artificial orthogonal
basis, ill-conditioning problems are often encountered,
rendering the solution vulnerable to noise.

In this work, we analyze the relationship between
the sampling noise and its impact on eigenvalue esti-
mation within the Krylov subspace. We also propose

techniques to mitigate sampling errors and to address
ill-conditioned bases. First, basis thresholding removes
the ineffective bases and establishes a trade-off between
the loss of information about the subspace and the sup-
pression of noise[1]. The optimal trade-off point is iden-
tified through an accurate perturbation analysis, as il-
lustrated in Fig.1a. Second, we introduce a novel mea-
surement technique for QKSD, called shifting operator,
which eliminates redundant Hamiltonian terms during
the measurement[2]. In electronic structure problems
with small-molecules, the measurement cost is reduced
by the factor of 20-500, as shown in Fig.1b.
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FIG. 1. (a) QKSD perturbation error with basis thresholding

applied. n(t) denotes the number of basis vectors remain-
ing after thresholding. The threshold points identified by our
proposed method are highlighted as larger markers, showing
near-optimal performance. (b) Error histogram before and af-
ter applying shifting technique and iterative coefficient split-
ting.
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