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Abstract—Quantum Federated Learning (QFL) is a promising
approach that leverages quantum computational resources within
a distributed federated learning framework, enabling collabora-
tive model training across multiple quantum devices. However,
existing QFL methods, such as Slimmable Quantum Federated
Learning (SlimQFL), rely on synchronous communication rounds
that require all devices to update the global model simultaneously,
leading to inefficiencies like idle times and the straggler problem
in practical deployments. To address these challenges, in this
paper, we propose Asynchronous SlimQFL (ASQFL), a novel QFL
protocol that allows devices to perform local training and com-
municate their model parameters to the server asynchronously.
ASQFL introduces a freshness-based aggregation strategy to
prioritize recent updates and a staleness mitigation mechanism to
handle delayed updates, ensuring robust convergence even under
heterogeneous device and network conditions.

I. INTRODUCTION

Quantum Federated Learning (QFL) [1] has gained consid-
erable attention as an emerging field that merges the principles
of Quantum Machine Learning (QML) [2] and Federated
Learning (FL) [3], paving the way for distributed quantum
intelligence. The integration of QML with FL enables the use
of Quantum Neural Networks (QNNs) [4] to train models
across multiple quantum devices while preserving data pri-
vacy by keeping local datasets decentralized. This distributed
learning approach holds significant promise in scenarios where
quantum computational power is distributed across multiple
entities, such as edge computing and multi-site quantum data
centers. However, most current QFL frameworks rely on a
synchronous communication protocol, where all participating
devices must complete their local training and transmit their
parameters to a central server within a strict time frame
[5]. While effective in homogeneous environments, these
synchronous approaches suffer from inefficiencies and slow
convergence when deployed in heterogeneous or resource-
constrained environments, where device capabilities and net-
work conditions can vary significantly.

One prominent synchronous QFL method is Slimmable
Quantum Federated Learning (SlimQFL) [6], which improves
communication efficiency by leveraging a dynamic architec-
ture of Quantum Slimmable Neural Networks (QSNNs) [7].
SlimQFL dynamically adapts to communication and energy
limitations by selectively training and transmitting different
sets of parameters, such as angle and pole parameters, based
on the available resources and channel conditions. However,
SlimQFL’s reliance on synchronized communication rounds

introduces a major bottleneck in real-world deployments.
Devices with limited computational power or poor network
connectivity act as stragglers, causing delays that prevent the
global model from updating until all devices have synchro-
nized. This results in prolonged idle times for high-capacity
devices and hampers overall convergence, making SlimQFL
less practical for large-scale distributed quantum networks
with heterogeneous device participation.

To overcome these limitations, we propose Asynchronous
SlimQFL (ASQFL), a novel strategy of the QFL framework
that allows devices to train and transmit their local QSNN
parameters to the server asynchronously, without waiting for
other devices to complete their training. ASQFL introduces a
freshness-based aggregation strategy that assigns a dynamic
weight to each update based on its reliability, ensuring that
newer updates have a greater influence on the global model.
Additionally, ASQFL includes a staleness mitigation mech-
anism that compensates for delayed updates, thus reducing
the negative impact of stale parameters on the convergence
process. By enabling asynchronous updates and using an
adaptive aggregation approach, ASQFL not only accelerates
the convergence speed, but also improves the robustness and
scalability of QFL in dynamic and heterogeneous environ-
ments.

II. PROPOSED SOLUTION DESIGN

A. Overview of Asynchronous SlimQFL (ASQFL)

The main challenge in Quantum Federated Learning (QFL)
is synchronizing quantum devices that have heterogeneous
computational resources and are connected through unreli-
able or variable communication channels [8]. To address
this, ASQFL adopts an asynchronous communication and
aggregation mechanism that allows each device to update
the global model independently based on its local training
progress. ASQFL improves the standard SlimQFL approach
by implementing the following key components:

• Asynchronous Local Training and Uploading: Each
device trains its local Quantum Neural Network (QSNN)
and uploads its parameters to the server as soon as local
convergence is achieved or predefined training criteria are
met.

• Freshness-Based Aggregation at the Server: The global
server assigns a freshness score to each incoming update
based on the time elapsed since the previous global



update. This score controls the weight of each update
in the aggregation process.

• Staleness Mitigation and Partial Aggregation: The
server dynamically adjusts the influence of significantly
delayed updates and can perform partial aggregation
when enough updates are received.

B. Mathematical Formulation of ASQFL

The ASQFL protocol is built on a foundation of asyn-
chronous gradient updates, where local devices optimize their
QSNN parameters independently and transmit them to the
server without requiring global synchronization. Let us define
the main components of the model:

• Global Model Parameters: The global QSNN model at
time t is represented as Θt = {θt, ϕt}, where θt and ϕt

are the pole parameters and angle parameters of the
Quantum Neural Network (QNN), respectively.

• Local Device Parameters: Each device n maintains its
own version of the model, denoted as Θn

t = {θnt , ϕn
t }.

The device performs local training to minimize its local
loss function Ln(Θ

n
t ), calculated as:

Ln(Θ
n
t ) = E(x,y)∼Dn

[ℓ (f(x; Θn
t ), y)] ,

where Dn is the local dataset of device n, f(x; Θn
t ) is the

output of the QSNN, and ℓ(·) is the loss function (e.g.,
mean squared error or cross-entropy).

• Local Gradient Descent Update: Each device updates
its local parameters using stochastic gradient descent:

Θn
t ← Θn

t − ηn∇ΘLn(Θ
n
t ),

where ηn is the learning rate of device n.
• Asynchronous Transmission to the Server: After a local

update, each device transmits its local parameters Θn
t to

the server asynchronously.

C. Freshness-Based Aggregation at the Server

The server receives local updates from devices at different
times. To effectively aggregate these updates, we define a
freshness score Fn(t) for each device n based on the time Tn

when its update is received. The freshness score is calculated
as:

Fn(t) = exp (−λ(t− Tn)) ,

where t is the current global time, Tn is the time of the
latest update from device n, and λ is a decay constant that
controls the rate at which the freshness score decreases. The
freshness score reflects the recency of the update: a higher
value indicates a fresher update, while a lower value suggests
a stale update.

D. Global Model Update with Freshness Weighting

Given the local parameters Θn
t = {θnt , ϕn

t } received from
multiple devices, the server aggregates these parameters using
a freshness-weighted average:

Θt ← Θt + η ·
N∑

n=1

Fn(t) · (Θn
t −Θt) ,

where η is the global learning rate, and Fn(t) is the
freshness score for device n at time t. This aggregation ensures
that recent updates have a stronger influence on the global
model, while stale updates are weighted down to mitigate their
impact. To separate the impact of the two types of parameters
(angle and pole), the aggregation can be split into two distinct
updates:

θt ← θt + η ·
N∑

n=1

Fn(t) · (θnt − θt) ,

ϕt ← ϕt + η ·
N∑

n=1

Fn(t) · (ϕn
t − ϕt) .

E. Staleness Mitigation with Temporal Decay

For significantly delayed updates (e.g., due to network
interruptions or high latency), ASQFL applies a temporal
decay penalty to reduce their contribution to the global model.
Let ∆t = t − Tn be the time difference between the global
time and the update time of device n. We define a staleness
factor Sn(∆t) as:

Sn(∆t) =
1

1 + γ ·∆t
,

where γ is a scaling factor that controls the degree of penalty
applied to delayed updates. The staleness factor is used to
further adjust the freshness score:

F̃n(t) = Fn(t) · Sn(∆t).

The updated global model parameters are then computed
using F̃n(t) instead of Fn(t):

Θt ← Θt + η ·
N∑

n=1

F̃n(t) · (Θn
t −Θt) .

F. Partial Aggregation and Early Stopping

To further enhance efficiency, the server can perform partial
aggregation if a majority of devices have sent their updates,
without waiting for every device to complete its training.
Define a participation ratio P (t) as the fraction of devices
that have sent updates up to time t:

P (t) =
1

N

N∑
n=1

1(Tn ≤ t),

where 1(·) is an indicator function that returns 1 if the
condition is true. If P (t) ≥ α, where α is a predefined
participation threshold (e.g., α = 0.7), the server performs
a global update using the available updates, thereby reducing
idle times.



G. Convergence Analysis
The convergence of ASQFL depends on the rate of asyn-

chronous updates and the balance between fresh and stale
parameters. Define the global loss function as:

L(Θt) =

N∑
n=1

wn · Ln(Θt),

where wn are the weights assigned based on the freshness
and staleness factors. We can show that ASQFL converges
under standard assumptions of smoothness and convexity by
bounding the expected decrease in L(Θt) after each asyn-
chronous update:

E [L(Θt+1)] ≤ L(Θt)− η ·

∥∥∥∥∥
N∑

n=1

Fn(t)∇ΘLn(Θ
n
t )

∥∥∥∥∥
2

.

This inequality guarantees that the global model converges
as long as the cumulative freshness scores are bounded and
the staleness penalties are properly controlled. The proposed
ASQFL framework enhances the efficiency and robustness of
quantum federated learning by enabling asynchronous updates,
employing freshness-based aggregation, and mitigating stale-
ness through temporal decay mechanisms.

III. PERFORMANCE EVALUATION

We evaluated the performance of the ASQFL framework
through simulations on a binary classification task. Using
the sklearn1, we generated a dataset of 100 samples with 5
features, distributed across 10 devices to simulate a feder-
ated learning setup. Each device trained a linear model with
5 weights, and the global model aggregated updates asyn-
chronously, applying a freshness score and staleness mitigation
via temporal decay. The simulation run for 1000 epochs with
a global learning rate of 0.01, a freshness decay rate of 0.1,
and a staleness factor of 0.05. Key metrics tracked included
the convergence of global model weights and the magnitude
of weight changes, which reflect the model’s learning and
stability.

As shown in the Fig. 1, the convergence of the global
model’s weights was observed by tracking the evolution of
the 5 trainable weights over the course of the 1000 train-
ing epochs. Initially, the weights fluctuated significantly, as
the global model aggregated asynchronous updates from the
randomly initialized local models on the devices. However,
as the simulation progressed, the weights began to stabilize.
The convergence behavior is a direct result of the collabo-
rative learning across devices, where local models improve
as they train on their respective datasets, and the server
aggregates these updates in an asynchronous manner. The
weights followed a pattern of gradual adjustment, with smaller
changes occurring in later epochs as the model approached
convergence (Fig. 2). This behavior indicates that the model
successfully learned from the distributed data and that the
asynchronous updates, along with freshness weighting and
staleness mitigation, contributed to stable learning dynamics.

1https://scikit-learn.org/
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Fig. 1. Covergence of Model Weights
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Fig. 2. Magnitude of Weight Changes

IV. CONCLUSION

In this paper, we proposed an Asynchronous Slimmable
Quantum Federated Learning (ASQFL) framework for FL in
heterogeneous environments. By leveraging asynchronous up-
dates, freshness weighting, and staleness mitigation, the frame-
work effectively addresses device heterogeneity and com-
munication delays. Our simulations demonstrated successful
global model convergence with diminishing weight changes,
indicating stable learning.
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