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Variational quantum algorithms: 
adaptive and pulse-based approaches
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• Adaptive quantum algorithms (ADAPT-VQA)
• Background & ADAPT-VQE

• Adaptive Gibbs state preparation

• Control-VQE: optimizing at the pulse level

Outline
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Image from Physics 11, 14 (2018)

Variationally change 

Reviews:
Cerezo et al, Nat. Rev. Phys. 3, 625 (2021)
Bharti et al, RMP 94, 015004 (2022)
Tilly et al, arXiv:2111.05176

Variational Quantum Eigensolver (VQE)

Ansatz

Measured energy

| ൿΨ( Ԧ𝜃) = 𝑈( Ԧ𝜃)| ൿΨ𝑟𝑒𝑓

𝛦 Ԧ𝜃 = Ψ( Ԧ𝜃) 𝐻 Ψ( Ԧ𝜃)

Parametrized circuit
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• Tailored to chosen platform
• Inefficient—too much of the Hilbert 

space sampled
• Not related to the problem →
• Difficult to optimize (barren plateaus)

McClean et al., Nat. Commun. 9, 4812 (2018)

+lots of work from LANL

Hardware-efficient ansatz

Kandala et al,  Nature 549, 242 (2017)
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• Instead of random circuits, use circuits that have knowledge of the 
problem

• Incorporate: symmetries (particle number, spin, spatial symmetry, etc), 
locality

• This can avoid issues with optimization, can lead to shorter circuits

Problem-aware ansätze
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Fermionic Hamiltonian and mapping

Map (spin) orbitals to qubits: Jordan-Wigner mapping 

Z strings O(N)
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One of the first problem-aware ansätze: UCCSD

Chemistry-inspired (UCCSD) ansatz
• Incorporates symmetries
• Generalizes classical simulations
• Impractically long circuits, many CNOTs
• Inconsistent under low-order Trotterization
 Grimsley et al., JCTC 2020, 16, 1, 1-6

Peruzzo et al, Nature Comm. 5, 1 (2014) O’Malley et al, PRX 6, 031007 (2016) Xue et al, Nature 601, 343 (2022)

gates built from symmetry-
adapted fermionic operators
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Quantum circuit that is:

• Short

• Expressive

• Trainable

Constructing ansatz: desiderata
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• Adaptive quantum simulation (ADAPT-VQE)
• Molecules

• Periodic systems

• Control-VQE: optimizing at the pulse level

Outline
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• Start from a simple reference state

• Quantum resources are precious: Only add as many operators as needed

• Problem-tailor the ansatz: Use the QC to determine how to grow the ansatz further

Adaptive, problem-tailored VQE (ADAPT-VQE) 

𝑈3(𝜽3)

Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019) 10



ADAPT-VQE ingredients: (i) operator pool

Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)

• ADAPT-VQE uses a pool of operators, Am 

• Applies unitaries one by one : Um = exp(mAm) to a reference state
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ADAPT-VQE ingredients: (ii) update criterion

𝜕

𝜕𝜃𝑗
Ψ𝑘 𝑒−𝜃𝑗𝐴𝑗𝐻𝑒𝜃𝑗𝐴𝑗 Ψ𝑘 |𝜃𝑗=0 = Ψ𝑘 𝐻, 𝐴𝑗 Ψ𝑘

• Identify which 𝑒𝜃𝑗𝐴𝑗  to apply to reference state ۧ|Ψ0

• Take gradient of mean energy wrt 𝜃𝑗

New operator → measure on hardware

Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)

𝑘: ADAPT iteration step
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ADAPT-VQE overview

Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)

Inputs:
• Hamiltonian
• Initial state
• Operator pool

13



UCCSD

HF

ADAPT(ϵ 1)

ADAPT(ϵ 2)

ADAPT(ϵ 3)

Chem ical 
Accuracy

Exact  (FCI)

ADAPT-VQE with fermionic pool

Grimsley, Economou, Barnes, Mayhall, 
Nature Communications 10, 3007 (2019)

energy
error

BeH2

bond distance 2.39 Å

nr of 
variational 
parameters

14



Problem-tailored vs problem-aware 
Example: ansatz at different points on dissociation curve of a given molecule

• UCCSD: exact same across curve

• ADAPT-VQE: changes across the curve, picks up operators as needed for 
strongly correlated regions

ADAPT-VQE vs other ansätze
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Trainability of ADAPT-VQE

Grimsley et al, npj Quantum Information 9, 19 (2023)

● ADAPT produces compact tailored ansätze

● Shallow circuit → the landscape is generally 
too rugged

● ADAPT avoids the issues associated with 
trainability

● By construction resistant to barren plateaus
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• Problem-tailored vs problem-aware 
Example: ansatz at different points on dissociation curve of a given molecule

• UCCSD: exact same across curve

• ADAPT-VQE: changes across the curve, picks up operators as needed for 
strongly correlated regions

• Expressivity potential vs expressive circuits
• Random circuits: very expressive, hard to optimize

• ADAPT-generated ansatz: 
• bespoke to problem, each instance not random

• parameters warm-started

ADAPT-VQE vs other ansätze
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How should the operator pool be chosen?

Criteria & desiderata

• Problem constraints: symmetries, etc
• Hardware constraints: connectivity, locality, etc
• Small pool size
• …

An obvious choice is the 
fermionic pool
• Preserves particle number
• Can be spin-adapted 

(preserves Sz)

But: 
• Hardware inefficient
• Grows with system size
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ADAPT-VQE: Pool Choices

19

❖ Fermionic Pools: Operators directly correspond to fermionic excitations

❖ Qubit Excitation (QE) Pools: Operators correspond to fermionic excitations up to
anticommutation effects

❖ Qubit Pools: Operators are individual Pauli strings

The choice of operator pool impacts the circuit- and parameter-efficiency of the
final ansatz. Popular pool types include:

Yordanov et al, Commun Phys 4, 228 (2021)
Tang et al, PRX Quantum 2, 020310 (2021)



We can do even better by further incorporating symmetries:
Coupled-excitation operator pool

Ramôa et al, arXiv:2407.08696
See Mafalda’s talk at 4.15 pm 

Couple certain excitations based on symmetry considerations

E.g., QE pool does not take 1, 1 → 2, 2 on the same footing as 1, 2 → 2, 1 (: spin up; : spin down)

If we couple such operators, we obtain a pool with operators of the form: 
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CEO pool, results & comparison to qubit and QE pools

Ramôa et al, arXiv:2407.08696 

energy 
error

parameter
count

CNOT count



• Is ADAPT-VQE the most efficient way to construct circuits?
• Can we optimize further for circuit depth?
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TETRIS-ADAPT-VQE: concept

Instead of one-at-a-time, add multiple operators at each step

Tiling Efficient Trial circuits with Rotations Implemented Simultaneously 

Anastasiou, et al Phys. Rev. Research 6, 013254 (2024)
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TETRIS-ADAPT-VQE: concept

Instead of one-at-a-time, add multiple operators at each step according to: 
• Gradient magnitude
• 𝒩th operator acting on different set of qubits from (𝒩 − 𝑗)th

Tiling Efficient Trial circuits with Rotations Implemented Simultaneously 

24

Anastasiou, et al Phys. Rev. Research 6, 013254 (2024)



H H H H H H

TETRIS-ADAPT-VQE: results

Blue: TETRIS-ADAPT
Orange: standard ADAPT 25

Anastasiou, et al Phys. Rev. Research 6, 013254 (2024)



ADAPT Iteration

Trainability of TETRIS-ADAPT-VQE

ADAPT 
strategy

26

Anastasiou, et al Phys. Rev. Research 6, 013254 (2024)



Putting it all together: CEO-ADAPT-VQE* 
2019 vs 2024 ADAPT-VQE

• New (CEO) pool 

• TETRIS strategy

• Recycling Hessian

• Grouping commuting operators 

Compared to UCCSD:

• Order(s) of magnitude improvement in 
CNOT count/depth

• Comparable nr of measurements



• Adaptive quantum algorithms (ADAPT-VQA)
• Background & ADAPT-VQE

• Adaptive Gibbs state preparation

• Control-VQE: optimizing at the pulse level

Outline
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• Given Hamiltonian 𝐻 acting on data system 𝐷 with 𝑁𝐷  qubits, we wish to prepare mixed thermal states 
at arbitrary temperature 𝑇

𝜌𝐺 𝑇 =
𝑒−𝐻/𝑇

Tr 𝑒−𝐻/𝑇

• This has useful applications in quantum simulation, quantum machine learning, quantum optimization, 
etc., but is a hard problem in general

• Standard approach: prepare state that minimizes 𝐹 𝜌 Ԧ𝜃 = Tr 𝜌 Ԧ𝜃 𝐻 + 𝑇𝜌 Ԧ𝜃 ln 𝜌 Ԧ𝜃

• Challenges: 
▪ It’s hard to know a priori what will make an efficient, effective ansatz
▪ Measuring the entropy (and gradients) is difficult on hardware

Gibbs state preparation

Wu and Hsieh. PRL 123, 220502 (2019)
Chowdhury, Low, and Wiebe. arXiv:2002:00055 (2020)

Wang, Li, and Wang. PRA 16, 054035 (2021) 
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• Our approach:
✓New objective function that is easier to measure: 

𝐶 𝜌 Ԧ𝜃 = − Tr 𝜌𝐺 𝑇 𝜌 Ԧ𝜃 +
1

2
Tr 𝜌 Ԧ𝜃

2

✓ADAPT-VQE approach to grow the ansatz

Gibbs-ADAPT-VQE

Warren et al, arXiv: 2203.12757
30



• Our approach:
✓New objective function that is easier to measure: 

𝐶 𝜌 Ԧ𝜃 = − Tr 𝜌𝐺 𝑇 𝜌 Ԧ𝜃 +
1

2
Tr 𝜌 Ԧ𝜃

2

✓ADAPT-VQE approach to grow the ansatz

• Ancilla system can be any size, allowing resource 
savings (though 𝑁𝐴 = 𝑁𝐷 needed at larger 𝑇)

• Operator pool: all 1- and 2-qubit Pauli’s on combined 
data/ancilla system

• Pool requires initial state be only partially entangled 
(use non-optimized random 𝑦-rotations and CNOTs)

Gibbs-ADAPT-VQE

Warren et al, arXiv: 2203.12757
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• Our approach:
✓New objective function that is easier to measure: 

𝐶 𝜌 Ԧ𝜃 = − Tr 𝜌𝐺 𝑇 𝜌 Ԧ𝜃 +
1

2
Tr 𝜌 Ԧ𝜃

2

✓ADAPT-VQE approach to grow the ansatz

• Ancilla system can be any size, allowing resource 
savings (though 𝑁𝐴 = 𝑁𝐷 needed at larger 𝑇)

• Operator pool: all 1- and 2-qubit Pauli’s on combined 
data/ancilla system

• Pool requires initial state be only partially entangled 
(use non-optimized random 𝑦-rotations and CNOTs)

Gibbs-ADAPT-VQE

Warren et al, arXiv: 2203.12757

Periodic XY Hamiltonian

𝐻 = − ෍

𝑖=1

𝑁𝐷

𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1  𝑁𝐷 = 4
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Avoiding barren plateaus in Gibbs-ADAPT-VQE

o Use Renyi divergence-based loss function:

• Unbounded → gradients remain large far from solution                    Kieferová  et al, arXiv:2106.09567

𝑳 𝝈, 𝝆 = 𝐥𝐨𝐠 𝐓𝐫 𝝈𝟐𝝆−𝟏

Gibbs-ADAPT-VQE simulations for 
different loss functions

Sherbert et al, arXiv:2408.00218
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Still no quantum advantage
What could work out in the near term?
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• Adaptive quantum algorithms (ADAPT-VQA)
• Background & ADAPT-VQE

• Adaptive Gibbs state preparation

• Control-VQE: optimizing at the pulse level

Outline
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• All gates are made of electromagnetic pulses
• Using gates is a digitized approach

Optimizing at the pulse level

Example: pulses implementing 
IBM single-qubit gates
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• All gates are made of electromagnetic pulses
• Using gates is a digitized approach

Optimizing at the pulse level

Example: pulses implementing 
IBM single-qubit gates

Pulse-level optimization:

• Throw out the gates, parameterize pulse directly
• Measure <H>
• Classical optimization → update pulse parameters
• Repeat until convergence

Meitei et al, npj Quantum Information 7, 155 (2021)37



Gate-based parameterization is a special case of pulse parameterization

Pulse-based parameterization (“ctrl-VQE”) 

Lots of freedom in which terms to parameterize, and how to parameterize them

Meitei et al, npj Quantum Information 7, 155 (2021)38
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Noisy Optimization

Orders of magnitude improvement:
E.g., for LiH: 80,000ns (gate-based UCCSD) vs. 50ns (ctrl-VQE) 

Number of segments required for 
convergence

Dissociation curve for H2
(Indistinguishable from FCI)

Meitei et al, npj Quantum Information 7, 155 (2021)

Numerical results
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Ctrl-VQE: minimal evolution time

Minimal evolution time (MET): the min time required to transition between two particular quantum states 
(also referred to as quantum speed limit (QSL))

• Below a certain evolution time there is no solution 
• Shortening the total pulse time leads to ‘bang-bang’ control (Pontryagin principle)

Simulations for H2 at 
bond distance 1.5 A

Asthana, Liu, et al, 
Phys. Rev. Applied 19, 064071 (2023)

c t r l - VQE

• T

•

4 17
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Ctrl-VQE: parameterization and optimizability 

Sherbert, Amer, et al, arXiv:2405.15166
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Summary

• ADAPT-VQE

• Algorithmic improvements since 2019
• TETRIS-ADAPT-VQE (2022)
• Efficient measurement of gradients (2023)
• CEO pool (2024)
• Hessian recycling (2024)

• Adaptive Gibbs state preparation

• Ctrl-VQE
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ADAPT-VQE: measurement ‘overhead’

What is the 
additional cost of 

this step?

Let’s focus first on the qubit pool (XXXY, etc)
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Measuring gradients in ADAPT

Number of terms 
goes as 𝑂(𝑁4)

Size of Pauli pool 
also goes as 𝑂(𝑁4)

• How can we decrease the number of state preparations?
 Commuting observables can be measured simultaneously

• Which grouping heuristic should we use?
 Grouping Hamiltonian terms not ideal

Anastasiou et al, arXiv:2306.03227 (2023)
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By extension, the commutators of the elements of any mutually 
commuting set of Pauli strings with any one Pauli string commute

For 𝐴, 𝐵, 𝐶 Pauli strings:

If [𝐵, 𝐶] = 0, then [ [𝐴, 𝐵] , [𝐴, 𝐶] ]  =  0

Measuring gradients in ADAPT—a better approach

Anastasiou et al, arXiv:2306.03227 (2023)
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𝑖𝑌𝑖𝑋𝑗𝑋𝑘𝑋𝑙 ?What does this mean for operators of the form

𝑂(𝑁3) commutators can be 
measured simultaneously!

• We can group the commutators of any Hamiltonian term with all qubit operators into 2𝑁 groups

• Measuring term-by-term of the Hamiltonian means all observables in any given group have the same weight 
– lower shot-noise

• Measuring the pool gradient is only ~𝑁 times as expensive as a naïve VQE iteration

• QE and CEO pools contain same commuting terms → approach carries over

Anastasiou et al, arXiv:2306.03227 (2023)

Measuring gradients in ADAPT—a better approach

𝐻 terma
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Ctrl-VQE: minimal evolution time

A (possibly surprising) finding:

Leakage to excited states outside qubit space speeds up evolution

Simulations for H2 at 
bond distance 1.5 A

Asthana, Liu, et al, 
Phys. Rev. Applied 19, 064071 (2023)

Success probability vs pulse duration in transmon qudits

H2 molecular simulation at 1.5A bond distance. 100 pulse divisions. 

Probability of finding FCI exact ground state as a function of pulse duration.

Faster state evolution in transmons with access to higher levels.

|0>

|1>

|2>

Forms 
computational 

subspace

Final state 
projected and 

normalized on 

computational 
subspace

15 17

Probability to reach exact solution
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