Variational quantum algorithms: adaptive and pulse-based approaches

## Sophia Economou







QTML, Melbourne, Nov 2024

#### Outline

- Adaptive quantum algorithms (ADAPT-VQA)
  - Background & ADAPT-VQE
  - Adaptive Gibbs state preparation

• Control-VQE: optimizing at the pulse level

Variational Quantum Eigensolver (VQE)



Reviews:

Cerezo et al, Nat. Rev. Phys. 3, 625 (2021) Bharti et al, RMP 94, 015004 (2022) Tilly et al, arXiv:2111.05176 3

*Image from* Physics **11**, 14 (2018)

#### Hardware-efficient ansatz

- Tailored to chosen platform
- Inefficient—too much of the Hilbert space sampled
- Not related to the problem  $\rightarrow$
- Difficult to optimize (barren plateaus) McClean et al., Nat. Commun. 9, 4812 (2018) +lots of work from LANL





Kandala et al, Nature 549, 242 (2017)

- Instead of random circuits, use circuits that have knowledge of the problem
- Incorporate: symmetries (particle number, spin, spatial symmetry, etc), locality
- This can avoid issues with optimization, can lead to shorter circuits

Fermionic Hamiltonian and mapping

$$H = \sum_{p,q=1}^{N} h_{pq} a_p^{\dagger} a_q + \sum_{p,q,r,s=1}^{N} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

Map (spin) orbitals to qubits: Jordan-Wigner mapping

$$a_i^\dagger \mapsto rac{1}{2} (X_i - \mathrm{i} Y_i) \prod_{r=0}^{i-1} Z_r$$
  $a_i \mapsto rac{1}{2} (X_i + \mathrm{i} Y_i) \prod_{r=0}^{i-1} Z_r$ 



### One of the first problem-aware ansätze: UCCSD

gates built from symmetryadapted fermionic operators

Peruzzo et al, Nature Comm. 5, 1 (2014)

Atomic separation R (pm)

200

250

300

-2.9

50

100

O'Malley et al, PRX 6, 031007 (2016)

Bond Length R (Å)

2.5

2.0

3.0

-1.2

0.5

1.0

Xue et al, Nature 601, 343 (2022)

1.5

Internuclear distance R (Å)

1.0

2.0

2.5

-1.2

0.5

3.0

#### Constructing ansatz: desiderata

*Quantum circuit that is:* 

- Short
- Expressive
- Trainable

#### Outline

- Adaptive quantum simulation (ADAPT-VQE)
  - Molecules
  - Periodic systems

• Control-VQE: optimizing at the pulse level

#### Adaptive, problem-tailored VQE (ADAPT-VQE)

- Start from a simple reference state
- Quantum resources are precious: Only add as many operators as needed
- Problem-tailor the ansatz: Use the QC to determine how to grow the ansatz further



Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)

#### ADAPT-VQE ingredients: (i) operator pool

- ADAPT-VQE uses a pool of operators,  $A_{\rm m}$
- Applies unitaries one by one :  $U_m = \exp(\theta_m A_m)$  to a reference state



#### ADAPT-VQE ingredients: (ii) update criterion

- Identify which  $e^{\theta_j A_j}$  to apply to reference state  $|\Psi_0\rangle$
- Take gradient of mean energy wrt  $\theta_i$

$$\frac{\partial}{\partial \theta_j} \langle \Psi_k | e^{-\theta_j A_j} H e^{\theta_j A_j} | \Psi_k \rangle |_{\theta_j = 0} = \langle \Psi_k | [H, A_j] | \Psi_k \rangle$$

New operator  $\rightarrow$  measure on hardware

k: ADAPT iteration step

#### ADAPT-VQE overview



Grimsley, Economou, Barnes, Mayhall, Nature Communications 10, 3007 (2019)

#### ADAPT-VQE with fermionic pool



#### ADAPT-VQE vs other ansätze

#### **Problem-tailored vs problem-aware**

Example: ansatz at different points on dissociation curve of a given molecule

- UCCSD: exact same across curve
- ADAPT-VQE: changes across the curve, picks up operators as needed for strongly correlated regions

### Trainability of ADAPT-VQE

- ADAPT produces compact tailored ansätze
- Shallow circuit → the landscape is generally too rugged
- ADAPT avoids the issues associated with trainability
- By construction resistant to barren plateaus



Grimsley et al, npj Quantum Information 9, 19 (2023)

#### ADAPT-VQE vs other ansätze

#### • Problem-tailored vs problem-aware

Example: ansatz at different points on dissociation curve of a given molecule

- UCCSD: exact same across curve
- ADAPT-VQE: changes across the curve, picks up operators as needed for strongly correlated regions

### • *Expressivity potential* vs expressive circuits

- Random circuits: very expressive, hard to optimize
- ADAPT-generated ansatz:
  - bespoke to problem, each instance not random
  - parameters warm-started

#### How should the operator pool be chosen?



•

•

#### ADAPT-VQE: Pool Choices

The choice of operator pool impacts the circuit- and parameter-efficiency of the final ansatz. Popular pool types include:

Fermionic Pools: Operators directly correspond to fermionic excitations

$$T_{ijkl}\equiv a_{i}^{\dagger}a_{j}^{\dagger}a_{k}a_{l}-a_{k}^{\dagger}a_{l}^{\dagger}a_{i}a_{j}$$

Qubit Excitation (QE) Pools: Operators correspond to fermionic excitations up to anticommutation effects

$${ ilde T}_{ijkl} \equiv Q_i^\dagger Q_j^\dagger Q_k Q_l - Q_k^\dagger Q_l^\dagger Q_i Q_j$$

- Qubit Pools: Operators are individual Pauli strings
  - $i \cdot Y_q X_p X_s X_r, \qquad i \cdot X_q Y_p X_s X_r, \qquad i \cdot X_q X_p Y_s X_r, \qquad i \cdot X_q X_p X_s Y_r, \\ i \cdot X_q Y_p Y_s Y_r, \qquad i \cdot Y_q X_p Y_s Y_r, \qquad i \cdot Y_q Y_p X_s Y_r, \qquad i \cdot Y_q Y_p Y_s X_r.$



Yordanov et al, *Commun Phys* **4**, 228 (2021) Tang et al, *PRX Quantum* **2**, 020310 (2021)

### We can do even better by further incorporating symmetries: Coupled-excitation operator pool

Couple certain excitations based on symmetry considerations

E.g., QE pool does not take  $\alpha_1$ ,  $\beta_1 \rightarrow \alpha_2$ ,  $\beta_2$  on the same footing as  $\alpha_1$ ,  $\beta_2 \rightarrow \alpha_2$ ,  $\beta_1$  ( $\alpha$ : spin up;  $\beta$ : spin down)

If we couple such operators, we obtain a pool with operators of the form:



Ramôa et al, arXiv:2407.08696 See Mafalda's talk at 4.15 pm

$$T_{\alpha_{1}\beta_{1}\alpha_{2}\beta_{2}}^{(MVP-CEO)}(\theta_{1},\theta_{2}) = \frac{i}{8} [+(\theta_{1}+\theta_{2})XXXY - (\theta_{1}+\theta_{2})XXYX + (\theta_{1}-\theta_{2})XYXX + (\theta_{1}-\theta_{2})XYXX + (\theta_{1}-\theta_{2})XYYY - (\theta_{1}-\theta_{2})YXXX - (\theta_{1}-\theta_{2})YXYY + (\theta_{1}+\theta_{2})YYXY - (\theta_{1}+\theta_{2})YYYX].$$

# CEO pool, results & comparison to qubit and QE pools



- Is ADAPT-VQE the most efficient way to construct circuits?
- Can we optimize further for circuit depth?



ADAPT-VQE

#### **TETRIS-ADAPT-VQE:** concept

#### Tiling Efficient Trial circuits with Rotations Implemented Simultaneously

Instead of one-at-a-time, add multiple operators at each step



Anastasiou, et al Phys. Rev. Research 6, 013254 (2024)

#### **TETRIS-ADAPT-VQE:** concept

Tiling Efficient Trial circuits with Rotations Implemented Simultaneously

Instead of one-at-a-time, add multiple operators at each step according to:

- Gradient magnitude
- $\mathcal{N}$ th operator acting on different set of qubits from  $(\mathcal{N} j)$ th



Anastasiou, et al Phys. Rev. Research 6, 013254 (2024)

#### TETRIS-ADAPT-VQE: results





Anastasiou, et al Phys. Rev. Research 6, 013254 (2024)

Blue: TETRIS-ADAPT Orange: standard ADAPT

#### Trainability of TETRIS-ADAPT-VQE



### Putting it all together: CEO-ADAPT-VQE\* 2019 vs 2024 ADAPT-VQE



- New (CEO) pool
- TETRIS strategy
- Recycling Hessian
- Grouping commuting operators

Compared to UCCSD:

- Order(s) of magnitude improvement in CNOT count/depth
- Comparable nr of measurements



#### Outline

- Adaptive quantum algorithms (ADAPT-VQA)
  - Background & ADAPT-VQE
  - Adaptive Gibbs state preparation

### • Control-VQE: optimizing at the pulse level

#### Gibbs state preparation

• Given Hamiltonian H acting on data system D with  $N_D$  qubits, we wish to prepare mixed thermal states at arbitrary temperature T

$$o_G(T) = \frac{e^{-H/T}}{\operatorname{Tr}(e^{-H/T})}$$

- This has useful applications in quantum simulation, quantum machine learning, quantum optimization, etc., but is a hard problem in general
- Standard approach: prepare state that minimizes  $F(\rho(\vec{\theta})) = \text{Tr}(\rho(\vec{\theta})H + T\rho(\vec{\theta})\ln\rho(\vec{\theta}))$
- Challenges:
  - It's hard to know a priori what will make an efficient, effective ansatz
  - Measuring the entropy (and gradients) is difficult on hardware

Wu and Hsieh. PRL **123**, 220502 (2019) Chowdhury, Low, and Wiebe. arXiv:2002:00055 (2020) Wang, Li, and Wang. PRA **16**, 054035 (2021)

#### Gibbs-ADAPT-VQE

#### • Our approach:

✓ New objective function that is easier to measure:

$$C\left(\rho(\vec{\theta})\right) = -\operatorname{Tr}\left(\rho_G(T)\rho(\vec{\theta})\right) + \frac{1}{2}\operatorname{Tr}\left(\rho(\vec{\theta})^2\right)$$

✓ ADAPT-VQE approach to grow the ansatz



#### Gibbs-ADAPT-VQE

• Our approach:

✓ New objective function that is easier to measure:  $C\left(\rho(\vec{\theta})\right) = -\operatorname{Tr}\left(\rho_G(T)\rho(\vec{\theta})\right) + \frac{1}{2}\operatorname{Tr}\left(\rho(\vec{\theta})^2\right)$ ✓ ADAPT-VQE approach to grow the ansatz

- Ancilla system can be any size, allowing resource savings (though  $N_A = N_D$  needed at larger T)
- Operator pool: all 1- and 2-qubit Pauli's on combined data/ancilla system
- Pool requires initial state be only partially entangled (use non-optimized random y-rotations and CNOTs)



#### Gibbs-ADAPT-VQE

#### • Our approach:

✓ New objective function that is easier to measure:  $C\left(\rho(\vec{\theta})\right) = -\operatorname{Tr}\left(\rho_G(T)\rho(\vec{\theta})\right) + \frac{1}{2}\operatorname{Tr}\left(\rho(\vec{\theta})^2\right)$ ✓ ADAPT-VQE approach to grow the ansatz

- Ancilla system can be any size, allowing resource savings (though  $N_A = N_D$  needed at larger T)
- Operator pool: all 1- and 2-qubit Pauli's on combined data/ancilla system
- Pool requires initial state be only partially entangled (use non-optimized random y-rotations and CNOTs)

Periodic XY Hamiltonian  $H = -\sum_{i=1}^{N_D} X_i X_{i+1} + Y_i Y_{i+1} \qquad N_D = 4$ 



#### Avoiding barren plateaus in Gibbs-ADAPT-VQE

- Use Renyi divergence-based loss function:
  - Unbounded  $\rightarrow$  gradients remain large far from solution

 $L(\sigma, \rho) = \log(\operatorname{Tr}(\sigma^2 \rho^{-1}))$ 

Kieferová et al, arXiv:2106.09567

33



# Still no quantum advantage What could work out in the near term?

#### Outline

- Adaptive quantum algorithms (ADAPT-VQA)
  - Background & ADAPT-VQE
  - Adaptive Gibbs state preparation

• Control-VQE: optimizing at the pulse level

#### Optimizing at the pulse level

- All gates are made of electromagnetic pulses
- Using gates is a *digitized approach*



#### Optimizing at the pulse level

- All gates are made of electromagnetic pulses
- Using gates is a *digitized approach*

Pulse-level optimization:

- Throw out the gates, parameterize pulse directly
- Measure <H>
- Classical optimization  $\rightarrow$  update pulse parameters
- Repeat until convergence



Meitei et al, npj Quantum Information 7, 155 (2021)

#### Pulse-based parameterization ("ctrl-VQE")

Gate-based parameterization is a **special case** of pulse parameterization

Lots of freedom in which terms to parameterize, and how to parameterize them

Meitei et al, npj Quantum Information 7, 155 (2021)



#### Numerical results

Dissociation curve for H2 Number of segments required for (Indistinguishable from FCI) convergence  $\mathsf{H}_2$ -8--0.73Energy error (kcal/mol) 3 → HeH<sup>+</sup> 🗕 LiH -0.83Energy (H) 2-0.93ΗF Chemical accuracy -1.03FCI ..⊡. ctrl-VQE -1.130 3.3 0.30.9 1.52.12.723 8 9 105 6 Bond distance (Å) No. of time segments

Orders of magnitude improvement:

E.g., for LiH: 80,000ns (gate-based UCCSD) vs. 50ns (ctrl-VQE)

Meitei et al, npj Quantum Information 7, 1554(2021)

#### Ctrl-VQE: minimal evolution time

Minimal evolution time (MET): the min time required to transition between two particular quantum states (also referred to as quantum speed limit (QSL))

- Below a certain evolution time there is no solution
- Shortening the total pulse time leads to 'bang-bang' control (Pontryagin principle)



Asthana, Liu, et al, Phys. Rev. Applied **19**, 064071 (2023)

#### Ctrl-VQE: parameterization and optimizability





Sherbert, Amer, et al, arXiv:2405.15166

### Summary

- ADAPT-VQE
- Algorithmic improvements since 2019
  - TETRIS-ADAPT-VQE (2022)
  - Efficient measurement of gradients (2023)
  - CEO pool (2024)
  - Hessian recycling (2024)
- Adaptive Gibbs state preparation











#### Acknowledgements

#### Student/postdocs:





#### Mafalda Ramoa

Peter Anastasiou



Karunya Shirali



#### Kyle Sherbert



**Hisham Amer** 



Jim Furches

#### Senior collaborators (VT):



Edwin Barnes Virginia Tech



Nick Mayhall Virginia Tech







#### Postdoc positions open



Ed

Barnes

Physics







Sophia Economou Physics **VTQ** Director



Nick Mayhall Chemistry

Gretchen Matthews



Charles Cao Physics





Arpit Dua Physics





Seva Ivanov Physics





Sumeet Khatri CS





Math











Shao

ECE









Zhou Physics

#### ADAPT-VQE: measurement 'overhead'



Let's focus first on the qubit pool (XXXY, etc)

#### Measuring gradients in ADAPT

$$\frac{\partial E}{\partial \theta_{i}}\Big|_{\theta_{i}=0} = \left[\frac{\partial}{\partial \theta_{i}}\left\langle \Psi^{(k)}\right|e^{-\theta_{i}P_{i}}He^{\theta_{i}P_{i}}\left|\Psi^{(k)}\right\rangle\right]\Big|_{\theta_{i}=0} = \left\langle \Psi^{(k)}\right|\left[H,P_{i}\right]\left|\Psi^{(k)}\right\rangle$$
Number of terms Size of Pauli pool also goes as  $O(N^{4})$ 

- How can we decrease the number of state preparations?
   Commuting observables can be measured simultaneously
- Which grouping heuristic should we use? Grouping Hamiltonian terms not ideal

Measuring gradients in ADAPT—a better approach

For A, B, C Pauli strings:

If 
$$[B, C] = 0$$
, then  $[[A, B], [A, C]] = 0$ 

By extension, the commutators of the elements of any mutually commuting set of Pauli strings with any one Pauli string commute

Anastasiou et al, arXiv:2306.03227 (2023)

#### Measuring gradients in ADAPT—a better approach



- We can group the commutators of any Hamiltonian term with all qubit operators into 2N groups
- Measuring term-by-term of the Hamiltonian means all observables in any given group have the same weight

   lower shot-noise
- Measuring the pool gradient is only  $\sim N$  times as expensive as a naïve VQE iteration
- QE and CEO pools contain same commuting terms  $\rightarrow$  approach carries over

#### Ctrl-VQE: minimal evolution time

#### A (possibly surprising) finding:

Leakage to excited states outside qubit space *speeds up evolution* 





Simulations for H2 at bond distance 1.5 A

```
Asthana, Liu, et al,
Phys. Rev. Applied 19, 064071 (2023)
```