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Algorithms designed for universal quantum computers

Childs, A. M., Maslov, D., Nam, Y., Ross, N. J., & Su, Y. (2018). PNAS, 115(38), 9456-9461.
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Static problem: find the eigenstates of H



Main Questions:
1. Classical simulation of 2D quantum system dynamics:

2. Dequantization of the ground-state energy estimation (GSEE) algorithm
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Dequantization for these quantum algorithms
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S Bravyi, D Gosset, R Movassagh
Nature Physics 17 (3), 337-341 (2021)
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1. Classical simulation of 2D quantum system dynamics

Wu, Zhang, and Yuan, arXiv:2409.04161
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Understanding 2D Hamiltonian is significant

2D Fermi-Hubbard Model

2D Hamiltonian Problems:

Theoretical perspective: quantum and anomalous Hall effects, superconductivity and magnetism

Applications: design 2D superconducting quantum computers, design functional materials such as electronics 
and sensors

Ground State Properties Superconducting Quantum Chip

Popular classical methods (such as MPS and PEPS) may face difficulties in tensor contraction and normalization.



5

Constant depth 2D quantum circuit simulation

S Bravyi, D Gosset, R Movassagh, Nature Physics 17 (3), 337-341 (2021)

One can efficiently calculate expectation values from constant depth 2D quantum circuits

However, short (constant) time 2D dynamics may require non-constant quantum circuits
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Main Question:
Classical simulation of 2D quantum system dynamics:
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2D quantum system dynamics
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Classical simulation of 2D quantum system dynamics:
Result: Given K Hamiltonians {𝐻), … , 𝐻*} defined on a two-dimensional Plane with 𝑛 qubits, any observable 
𝑂 = 𝑂)⊗⋯⊗𝑂+ with ||𝑂'|| ≤ 1, and time series {𝑡), … , 𝑡*} with |𝑡,| ≤ 𝑂(1) , there exists a classical 
algorithm that outputs a 𝜖-approximation to 0+ 𝑒'-!%! …𝑒'-"%"𝑂𝑒&'-"%" …𝑒&'-!%! 0+ in 𝑛.(0"#123(+/5)
running time, with 𝑡 = max{𝑡,}.
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Main Result
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Wu, Zhang, and Yuan, arXiv:2409.04161
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Algorithm Outline

Wu, Zhang, and Yuan, arXiv:2409.04161
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Classical simulation of 2D quantum system dynamics

Let 𝑈 = 𝑒!("!#! …𝑒!("###

Observe that                   𝜇 𝑡 = 0% 𝑈) 𝑂$⊗⋯⊗𝑂% 𝑈 0% = ⟨0%| 𝑈)𝑂$𝑈 … 𝑈)𝑂%𝑈 0%

Step 1: Using the Cluster Expansion method to approximate 𝑉( = 𝑈)𝑂(𝑈 for 𝑖 ∈ 𝑛 , where 𝑉( is limited into a 2𝑀×2𝑀
area with 𝑀 ≤ 𝑂(𝑒*# log(𝑛/𝜖 ))

Wu, Zhang, and Yuan, arXiv:2409.04161
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Step 1: Cluster Expansion:

Fact 1: when the cluster 𝑽 is disconnected, the commutator vanishes to 0; 

Fact 2: the number of connected cluster 𝑽 with size 𝑚 is at most 𝑂((𝑒𝜎)+) (𝜎 = 𝑂(1));

Fact 3: ℎ, $ , … , ℎ, + , 𝑂( ≤ 2+||𝑂(||;

Result 1: Let the time 𝑡 < 𝑡∗ = 1/(2𝑒𝜎), then the cluster expansion of 𝑒("#𝑂(𝑒!("# can be truncated up to the order 𝑀 ≤
𝑂(log(1/𝜖(1 − 2𝑡𝑒𝜎))).

Result 2: Consider more general scenarios where 𝑈 = 𝑒!("!#! …𝑒!("###, the cluster expansion of 𝑈𝑂(𝑈) can be approximated 
by

with 𝑂(log(1/𝜖 1 − 2𝑡𝑒𝜎 *)) when |max{𝑡.}| ≤ 1/(2𝑒𝐾𝜎).

Consider the Cluster Expansion:
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Step 1: Cluster Expansion:

Wu, Zhang, and Yuan, arXiv:2409.04161

Using the analytical continuation method, we can extend above results to general |𝒎𝒂𝒙{𝒕𝒌}| ≤ 𝑶(𝟏)
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Step 2: local approximations:

Let 𝑈 = 𝑒!("!#! …𝑒!("###

Observe that  𝜇 𝑡 = 0% 𝑈) 𝑂$⊗⋯⊗𝑂% 𝑈 0% = ⟨0%| 𝑈)𝑂$𝑈 … 𝑈)𝑂%𝑈 0%

Step 2: Assign operators {𝑉(} into two groups 𝑉 𝑅$ , 𝑉(𝑅0), which are easy to simulate classically

S Bravyi, D Gosset, R Movassagh
Nature Physics 17 (3), 337-341 (2021)

Wu, Zhang, and Yuan, arXiv:2409.04161
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Classical simulation of 2D quantum system dynamics
Combine all together, we have

Wu, Zhang, and Yuan, arXiv:2409.04161
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A Brief Summary

Quantum Circuit Observables Task Run Time

Constant depth, 2D [S. Bravyi, Nat. Phys, 2021] Any Mean value Poly(n)

Constant depth, 3D [S. Bravyi, Nat. Phys, 2021] Any Mean value 𝑂(2%#/&)
Constant depth [S. Bravyi, STOC, 2024] Positive semidefinite Probability distribution 𝑂(𝑛123 %)

Constant depth [R. L. Mann, PRXQuantum 2024] Close to Identity Mean value Poly(n)

Constant time Hamiltonian dynamics, 2D Any Mean value 𝑂(𝑛123 %)

Applications:
(1) 2D Guided Local Hamiltonian problem (with symmetry);
(2) Simulating shallow-depth 2D analog quantum computation;
(3) Simulating 2D VQE and QAOA algorithms
(4) Simulating 2D short time Adiabatic Evolution

Wu, Zhang, and Yuan, arXiv:2409.04161



15/181 Gharibian, Le Gall STOC (2023)

The GLH is proved to be BQP-hard1, meaning efficiently solvable.

Applications 1: 2D Guided Local Hamiltonian Problem 



First define the spectrum function of the initial state as follows1

where 𝑝( = 𝑐( 0. Then, define the convolution function

The function can be estimated in a probabilistic way:

[𝑓(𝑡) is the Fourier transformation of 𝑓(𝑥).

16/181 Tong, Lin PRX Quantum (2022). 

Applications 1: 2D Guided Local Hamiltonian Problem 
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Key to dequantization: ability to
approximate

Courtesy: Ding et al., 2024

Ancilla-free Hadamard test:
Using symmetry

Then,

The Loschmidt echo is transformed 
into a quantum mean value problem

Applications 1: 2D Guided Local Hamiltonian Problem 

Wu, Zhang, and Yuan, arXiv:2409.04161
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Applications 1: 2D Guided Local Hamiltonian Problem 

Wu, Zhang, and Yuan, arXiv:2409.04161
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Applications 2: Simulate Analog 2D QC

𝑈 𝜃 = 𝑒!(" 4 #

Wu, Zhang, and Yuan, arXiv:2409.04161
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Applications 3: Simulate 2D VQE Algorithm

2D Fermi-Hubbard model
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Wu, Zhang, and Yuan, arXiv:2409.04161
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Application 4: Simulating short-time adiabatic dynamics

Given a one-parameter family of Hamiltonians

The family of Hamiltonian describes a smooth adiabatic path such that a constant gap is
promised.
The adiabatic evolution is given by

where 𝒯 is the time-ordering operator.

The adiabatic theorem guarantees that for a slow enough evolution, a state initialized to
the ground state of 𝐻7 will persists as the ground state of the instantaneous eigenstate.

Our goal is to estimate the properties of the observable 𝑂 of the ground state of 𝐻) to
accuracy 𝜖:

We assume that the ground state of 𝐻7 is a product state.
Wu, Zhang, and Yuan, arXiv:2409.04161
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Application 4: Simulating short-time adiabatic dynamics

Wu, Zhang, and Yuan, arXiv:2409.04161
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Application 4: Simulating short-time adiabatic dynamics

Wu, Zhang, and Yuan, arXiv:2409.04161
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2. Dequantization of the GSEE algorithm

Zhang, Wu, and Yuan, arXiv:2411.16163



The ground-state energy estimation problem is perennial and fundamental problem for both physics
and computer science studies.

25/181 Kiteav et al., (2002) 2Gharibian, Le Gall STOC (2023)

Yet, the problem is proved to be QMA-complete1, meaning inefficiency for quantum computing.

Applications 1: 2D Guided Local Hamiltonian Problem 

The GLH is proved to be BQP-hard2, meaning efficiently solvable.
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Dequantization of the GSEE algorithm

The local Hamiltonian problem corresponds to the ground-state problem

The guided local Hamiltonian problem corresponds to the ground-state problem with a nontrivial guiding state

1Ghribian and Le Gall, STOC 2022; Zhang, Wu, and Yuan, arXiv: XXX

Local Hamiltonian problems

Guided local Hamiltonian problem



27

Dequantization of the GSEE algorithm

Consider local Hamiltonians and dequantization of the partition function (exponential function of H)

Zhang, Wu, and Yuan, arXiv:2411.16163
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Dequantization of the GSEE algorithm

Zhang, Wu, and Yuan, arXiv:2411.16163
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Dequantization of the GSEE algorithm

Zhang, Wu, and Yuan, arXiv:2411.16163
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Can we achieve quantum advantage with near-term hardware?

Classically Easy:
• 2D superconducting system with a constant time
• Noisy quantum circuits with constant noise
• Ground state estimation for constant gap 2D Hamiltonian with constant

accuracy
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We may achieve quantum advantage with near-term hardware

Classically hard:
• 2D superconducting system with time ~ qubit number
• Quantum system with all-to-all connection
• Noisy quantum circuits with noise rate ~ 1/gate number
• Ground state estimation for (polynomially) small gap 2D Hamiltonian with

high accuracy
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A few years

100 - 1000 noisy
physical qubits + gate

error 10!5
10-100 noisy qubits +

gate error 10!0
Fault-tolerant quantum 

computers

N
I
S
Q

Quantum
supremacy

Early
-

fault
-

toler
ant

100 physical/logical
qubits + logical error

10!6

A few years?A few years



Thanks!


