

An Efficient Classical Algorithm for 1. Simulating Short Time 2D Quantum Dynamics and 2. the guided Local Hamiltonian Problem

Xiao Yuan QTML 2024

Wu, Zhang, and Yuan, arXiv:2409.04161 Zhang, Wu, and Yuan, arXiv:2411.16163

xiaoyuan@pku.edu.cn

Algorithms designed for universal quantum computers

Dynamic problems: Schrodinger equation $\frac{d|\psi\rangle}{dt}$ dt $= -iH|\psi\rangle$

Static problem: find the eigenstates of H

Childs, A. M., Maslov, D., Nam, Y., Ross, N. J., & Su, Y. (2018). PNAS, *115*(38), 9456-9461.

Dequantization for these quantum algorithms

Main Questions:

1. Classical simulation of 2D quantum system dynamics:

S Bravyi, D Gosset, R Movassagh Nature Physics 17 (3), 337-341 (2021)

2. **Dequantization of the ground-state energy estimation (GSEE) algorithm**

1. Classical simulation of 2D quantum system dynamics

Wu, Zhang, and Yuan, arXiv:2409.04161

Understanding 2D Hamiltonian is significant

2D Hamiltonian Problems:

Theoretical perspective: quantum and anomalous Hall effects, superconductivity and magnetism

Applications: design 2D superconducting quantum computers, design functional materials such as electronics and sensors

Popular classical methods (such as MPS and PEPS) may face difficulties in tensor contraction and normalization.

Constant depth 2D quantum circuit simulation

One can efficiently calculate expectation values from constant depth 2D quantum circuits

However, short (constant) time 2D dynamics may require non-constant quantum circuits

S Bravyi, D Gosset, R Movassagh, Nature Physics 17 (3), 337-341 (2021)

2D quantum system dynamics

Main Question:

Classical simulation of 2D quantum system dynamics:

Problem 1 (*K*-step Quantum Dynamics Mean Value). Consider K local Hamiltonians $\{H^{(1)}, H^{(2)}, \cdots, H^{(K)}\}$ defined on a 2D plane, and a global observable $O = O_1 \otimes \cdots \otimes O_n$ with the operator norm $||O_i|| \leq 1$ for $i \in [n]$. The K-step quantum mean value is defined by

$$
\mu(\vec{t}) = \langle 0^n | \left(\prod_{k=1}^K e^{-iH^{(k)}t_k} \right)^{\dagger} O \left(\prod_{k=1}^K e^{-iH^{(k)}t_k} \right) |0^n\rangle, \tag{1}
$$

where evolution time series $\vec{t} = \{t_1, \dots, t_K\}$ (Fig. 1. a). The target is to provide an estimation $\hat{\mu}(\vec{t})$ such that $|\mu(\vec{t}) - \hat{\mu}(\vec{t})| \leq \epsilon.$

Main Result

Classical simulation of 2D quantum system dynamics:

Result: Given K Hamiltonians $\{H_1, ..., H_K\}$ defined on a two-dimensional Plane with n qubits, any observable $0 = 0_1 \otimes \cdots \otimes 0_n$ with $||0_i|| \le 1$, and time series $\{t_1, ..., t_K\}$ with $|t_k| \le 0(1)$, there exists a classical *algorithm that outputs a* ϵ *-approximation to* $\langle 0^n | e^{iH_1t_1} ... e^{iH_Kt_K} Oe^{-iH_Kt_K} ... e^{-iH_1t_1} | 0^n \rangle$ in $n^{O(e^{Kt} \log(n/\epsilon))}$ *running time, with* $t = \max\{t_k\}$ *.*

Algorithm Outline

Wu, Zhang, and Yuan, arXiv:2409.04161

Classical simulation of 2D quantum system dynamics

Let $U = e^{-iH_K t_K} ... e^{-iH_1 t_1}$

Observe that $\mu(\vec{t}) = \langle 0^n | U^\dagger (O_1 \otimes \cdots \otimes O_n) U | 0^n \rangle = \langle 0^n | (U^\dagger O_1 U) \dots (U^\dagger O_n U) | 0^n \rangle$

Step 1: Using the **Cluster Expansion method** to approximate $V_i = U^{\dagger}O_iU$ for $i \in [n]$, where V_i is limited into a 2*M*×2*M* area with $M \leq O(e^{Kt} \log(n/\epsilon))$

Step 1: Cluster Expansion:

Consider the Cluster Expansion:

$$
e^{iHt}O_ie^{-iHt}=\sum_{m\geq 0}^{+\infty}\sum_{\mathbf{V}\in\mathcal{C}_m}\frac{\lambda^{\mathbf{V}}}{\mathbf{V}!}\frac{(-it)^m}{m!}\sum_{\sigma\in\mathcal{P}_m}\left[h_{V_{\sigma(1)}},\cdots[h_{V_{\sigma(m)}},O_i]\right].
$$

Fact 1: when the cluster V is disconnected, the commutator vanishes to 0;

Fact 2: the number of connected cluster V with size m is at most $O((e\sigma)^m)$ ($\sigma = O(1)$);

$$
\text{Fact 3: } \left| \left| \left[h_{V(1)}, \dots, \left[h_{V(m)}, O_i \right] \right] \right| \right| \leq 2^m ||O_i||;
$$

Result 1: Let the time $|t| < t^* = 1/(2e\sigma)$, then the cluster expansion of $e^{iHt}O_ie^{-iHt}$ can be truncated up to the order $M \le$ $O(log(1/\epsilon(1 - 2te\sigma))).$

Result 2: Consider more general scenarios where $U = e^{-iH_K t_K}$... $e^{-iH_1 t_1}$, the cluster expansion of $U O_i U^{\dagger}$ can be approximated by

$$
V_{i}(\vec{t}) = \sum_{\substack{m_{1} \geq 0 \\ m_{K} \geq 0}}^{M} \sum_{\substack{\mathbf{V}_{1} \cdots \mathbf{V}_{K} \in \mathcal{G}_{m}^{K, Q_{i}}}} \frac{\prod_{k=1}^{K} (\lambda^{V_{k}} (-it_{k})^{m_{k}})}{\prod_{k=1}^{K} V_{k}! m_{k}!} \sum_{\substack{\sigma_{1} \in \mathcal{P}_{m_{1}} \\ \vdots \\ \sigma_{K} \in \mathcal{P}_{m_{K}}}} \left[h_{V_{\sigma_{1}(1)}}, \cdots \left[h_{V_{\sigma_{K}(m_{K})}}, O_{i} \right] \right].
$$

with $O(\log(1/\epsilon(1 - 2te\sigma)^{K}))$ when $|\max\{t_k\}| \leq 1/(2eK\sigma)$.

Step 1: Cluster Expansion:

Using the analytical continuation method, we can extend above results to general $|{max}{\{t_k\}}| \leq O(1)$

Lemma 4 (Informal). Given a single qubit observable O_i , then for any K-step quantum dynamics driven by $\{H^{(1)},\cdots,H^{(K)}\}\$ and corresponding constant time parameters $\{t_1,\cdots,t_K\}$, the operator $U_i(\vec{t})$ = $\prod_{k=1}^K e^{iH^{(k)}t_k} O_i \prod_{k=1}^K e^{-iH^{(k)}t_k}$ can be approximated by an operator $V_i(\vec{t})$ such that $||U_i(\vec{t}) - V_i(\vec{t})|| \leq \epsilon/2L$. Here, $V_i(\vec{t})$ represents $a\left(M = \tilde{\mathcal{O}}\left(e^{\pi t e K \mathfrak{d}} \log(2L/\epsilon)\right)$ -order truncated cluster expansion given by Eq. C5, $\mathfrak d$ represents the maximum degree of interaction graphs induced by Hamiltonians $\{H^{(1)}, \cdots, H^{(K)}\}$ and $t = \max\{t_k\}$. Meanwhile, we have

$$
\Omega(M) \le \sup p(V_i(\vec{t})) \le \mathcal{O}(4M^2).
$$
\n(D1)

Step 2: local approximations:

Let $U = e^{-iH_K t_K} ... e^{-iH_1 t_1}$

Observe that $\mu(\vec{t}) = \langle 0^n | U^{\dagger} (O_1 \otimes \cdots \otimes O_n) U | 0^n \rangle = \langle 0^n | (U^{\dagger} O_1 U) \dots (U^{\dagger} O_n U) | 0^n \rangle$

Step 2: Assign operators $\{V_i\}$ into two groups $V(R_1)$, $V(R_2)$, which are easy to simulate classically

Lemma 7. Given the operator $V_{R_i(l)}(t)$ defined as Eq. D_4 , for any for $x \in \{0,1\}^n$, there exists a classical algorithm that can deterministically output $\langle x|V_{R_j(l)}(t)|0^n\rangle$ within $C(n) \leq \mathcal{O}(\sqrt{n}2^{4M^2})$ running time.

Wu, Zhang, and Yuan, arXiv:2409.04161

Classical simulation of 2D quantum system dynamics

Combine all together, we have

Theorem 1. Given K Hamiltonians $\{H^{(1)}, \cdots, H^{(K)}\}$ defined on a 2D plane with n qubits, any observable $O = O_1 \otimes \cdots \otimes O_L$ with $||O_i|| \leq 1$ and locality $L \leq n$, and a time series $\vec{t} = (t_1, \dots, t_K)$, there exists a classical algorithm that outputs an approximation $\hat{\mu}(\vec{t})$ such that $|\mu(\vec{t}) - \hat{\mu}(\vec{t})| \leq \epsilon$ with a run time of at most

$$
\mathcal{O}\left(\frac{n}{\epsilon^2} \left(\frac{2L}{\epsilon}\right)^{e^{2\pi eK\mathfrak{d}t} \log(2L/\epsilon)}\right),\tag{2}
$$

where $t = \max\{t_k\}_{k=1}^K$ and $\mathfrak d$ represents the maximum degree of the related interaction graphs.

A Brief Summary

Applications:

- **(1) 2D Guided Local Hamiltonian problem (with symmetry);**
- **(2) Simulating shallow-depth 2D analog quantum computation;**
- **(3) Simulating 2D VQE and QAOA algorithms**
- **(4) Simulating 2D short time Adiabatic Evolution**

2D Ground State Energy Wu, Zhang, and Yuan, arXiv:2409.04161 Superconducting QC

Definition 2 (Guided local Hamiltonian problem). Input: a k-local Hamiltonian \hat{H} acting on n qubits such that $\|\hat{H}\| \leq 1$ query-access to an initial state (density matrix) ρ_I *Promise:* $\|\Pi_0\rho_I\| \ge \gamma$ Output: an estimate E'_0 such that $|E'_0 - E_0| \leq \epsilon$

The GLH is proved to be BQP -hard¹, meaning efficiently solvable.

¹ Gharibian, Le Gall STOC (2023) **15/18**

First define the spectrum function of the initial state as follows¹

$$
P(x):=\sum_{j=0}^{N-1}p_j\delta(x-E_j),
$$

where $p_i = |c_i|^2$. Then, define the convolution function

$$
C(x) := (f * P)(x)
$$

= $(P * f)(x) = \sum_{j=0}^{N-1} p_j \int_{-\infty}^{\infty} \delta(\tau - E_j) f(x - \tau) d\tau = \sum_{j=0}^{N-1} p_j \cdot f(x - E_j).$

The function can be estimated in a probabilistic way:

$$
C(x) = \int_{-\infty}^{\infty} \hat{f}(t)e^{2\pi i x t} \operatorname{Tr} \left(\rho e^{-2\pi i H t}\right) dt,
$$

 $\hat{f}(t)$ is the Fourier transformation of $f(x)$.

Key to dequantization: ability to approximate Tr $(\rho e^{-2\pi i Ht})$

Ancilla-free Hadamard test: Using symmetry $e^{-iHt}|\Omega\rangle = |\Omega\rangle.$

$$
e^{-iHt}|\psi_1\rangle=\frac{1}{\sqrt{2}}\left(|\Omega\rangle+e^{-iHt}|\psi_c\rangle\right).
$$

Then,

$$
\operatorname{Re}\left[\langle\psi_c|e^{-iHt}|\psi_c\rangle\right] = \langle\psi_1|e^{iHt} \left(|\Omega\rangle\langle\psi_c| + |\psi_c\rangle\langle\Omega|\right)e^{-iHt}|\psi_1\rangle,
$$

 $\text{Im}\left[\langle\psi_c|e^{-iHt}|\psi_c\rangle\right] = i\langle\psi_1|e^{iHt} \left(|\psi_c\rangle\langle\Omega|-|\Omega\rangle\langle\psi_c|\right)e^{-iHt}|\psi_1\rangle.$

The Loschmidt echo is transformed into a quantum mean value problem

Courtesy: Ding et al., 2024

Corollary 2. Given a 2D geometrical local Hamiltonian H that satisfies certain symmetry, and a corresponding classical initial state $|\psi_c\rangle$ with R configurations which has p_0 overlap to the ground state. There exists a classical algorithm that can output δ -approximation to the ground state energy with the run time of

$$
\mathcal{O}\left(\left(2Rn\right)^{e^{f(p_0,\delta)}\log(2Rn)+\mathcal{O}(1)}\right),\tag{7}
$$

where $f(p_0, \delta) \leq \mathcal{O}(\delta^{-1} \log(\delta^{-1} p_0^{-1})).$

TABLE I. Comparisons of our results with related previous studies on solving the GLH problem, focusing on accuracy, input constraints, and computational time complexity.

Algorithm	Method	Accuracy	Constraints	Complexity
Refs $[24, 25]$		$\varepsilon = \frac{1}{\text{poly}(n)}$	$k\text{-local}, H \leq 1,$ $\gamma \in (\frac{1}{\text{poly}(n)}, 1 - \frac{1}{\text{poly}(n)})$	BQP-complete
Ref [23]	Dequantized QSVT	$\varepsilon = \mathcal{O}(1)$	s-sparse, $ H \leq 1$	$\mathcal{O}\left(\gamma^{-4}(S 2^s+1)^{(2+4/\varepsilon)\log(1/\gamma)}\right)$
Ref [26]	Dequantized QSVT	$\varepsilon H = \mathcal{O}(H)$	k -local	$({\cal O}(1))^{\log(1/\gamma)/\varepsilon}$
Ref [29]	Dequantized 2D Dynamics	$\varepsilon = \mathcal{O}(1)$	k -local, 2D Symmetry	$\mathcal{O}\left(n^{e^{\log(1/\gamma) / \varepsilon}} \log n\right)$

Wu, Zhang, and Yuan, arXiv:2409.04161

Applications 2: Simulate Analog 2D QC

Corollary 3 (Simulate Superconducting Quantum Computation). Consider a $\sqrt{n} \times \sqrt{n}$ lattice graph $G = (V, E)$, where vertex set V represents the qubit array and E represents the qubit connection set. The analog superconducting quantum computation can achieve e^{-iHt} in each layer, with $H = \sum_{(i,j)\in E} h_{i,j}$, operator norm $||h_{i,j}|| \leq 1$ and $t \leq \mathcal{O}(1)$. Any $K \leq \mathcal{O}(\log \log n)$ -layer analog superconducting quantum computation can be simulated by a classical algorithm with a quasi-polynomial running time in terms of the system size n.

Applications 3: Simulate 2D VQE Algorithm

Corollary 4 (Dequantization Quantum Variational Algorithm). Given a 2D Fermi-Hubbard model defined on a $(n_a \times n_b)$ -sized lattice, a p-depth Hamiltonian Variational ansatz with parameters $\{t_v^{(j)}, t_h^{(j)}, t_o^{(j)}\}_{j=1}^p \in [-\pi, \pi]^{3p}$ and a slater determinant initial state, a ϵ -approximation to the VQE energy function can be simulated by a classical algorithm with a run time $\mathcal{O}\left(\frac{4n_an_b}{\epsilon^2}\left(\frac{2L}{\epsilon}\right)^{e^{4\pi^2 ep_b}\log(2L/\epsilon)}\right)$, where the constant $\mathfrak d$ represents the maximum degree of the interaction graph induced by 2D Fermi-Hubbard model and the locality $L \leq 8$.

Application 4: Simulating short-time adiabatic dynamics

Given a one-parameter family of Hamiltonians

 $H(t) := (1-t)H_0 + tH_1$ for $t \in [0,1]$

The family of Hamiltonian describes a smooth adiabatic path such that a constant gap is promised.

The adiabatic evolution is given by $U(t) = \mathcal{T}e^{-i\int_0^t H(s)ds}$,

where T is the time-ordering operator.

The adiabatic theorem guarantees that for a slow enough evolution, a state initialized to the ground state of 7 *will persists as the ground state of the instantaneous eigenstate.*

Our goal is to estimate the properties of the observable 0 of the ground state of H_1 to accuracy ϵ :

$$
|\langle O \rangle' - \langle O \rangle| \leq \epsilon.
$$

We assume that the ground state of H_0 is a product state. Wu, Zhang, and Yuan, arXiv:2409.04161

Theorem 3 (Time-dependent cluster expansion). Given $O(t) = \mathcal{T}e^{i\int_0^t H(s)ds} \mathcal{O} \mathcal{T}e^{-i\int_0^t H(s)ds}$, its cluster ex*pansion* is

$$
O(t) = \lim_{M \to \infty} \sum_{m=0}^{+\infty} \frac{(-it)^m}{m!M^m} \sum_{\mathbf{V} \in \mathcal{C}_m, V = (X_1, \dots, X_m)} \frac{\tilde{\lambda}^{\mathbf{V}}}{\mathbf{V}!} \left(\mathcal{T} \left[\sum_{n_m, \dots, n_1=0}^{M-1} \sum_{\sigma \in \mathcal{P}_m} \left[h_{X_{\sigma(m)}} f(n_m, t, X_{\sigma(m)}), \dots, h_{X_{\sigma(m)}} f(n_m, t, X_{\sigma(m)}) \right], \dots \right] \right)_{z=(0, \dots, 0)},
$$
\n(13)

where $\tilde{\lambda}_X(t) = \lambda_X(t) + t\lambda'_X(t)$ with $\lambda'_X(t) = \frac{d\lambda_X(t)}{dt}$, $\tilde{\lambda}^V = \prod_{X \in S} \tilde{\lambda}_X^{\mu_V(X)}$, $V! = \prod_{X \in S} \mu_V(X)!,$ $f(n_m, t, X) :=$ $\frac{\partial Z_X(n_m)}{\partial Z_X(t)}$ and $Z_X(t) = -it\lambda_X(t)$.

Wu, Zhang, and Yuan, arXiv:2409.04161

Theorem 4. Given a family of Hamiltonians $H(t) := (1-t)H_0 + tH_1$ for $t \in [0,1]$ with \mathfrak{d} the maximal degree of the interaction graph, and an observable O, let $U(t) = \mathcal{T}e^{-i\int_0^t H(s)ds}$ be the Hamiltonian evolution operator of the family of Hamiltonians with evolution time t. Then, for any $t < t^* = \frac{1}{2\sqrt{e^{\lambda}}}$, there exists an algorithm with the run time

$$
poly\left(\left(\frac{\|O\|}{\epsilon}t^2e^{t^2}\right)^{\frac{\log\left(\frac{\epsilon}{\|O\|}(t/t^*-1)\right)}{\log(t^*/t)}}\right)
$$
\n
$$
(29)
$$

that outputs an estimation $\langle O \rangle'$ to $\langle O \rangle := \langle \psi | U^{\dagger}(t) O U(t) | \psi \rangle$ for some product state $|\psi\rangle$ within ϵ accuracy:

$$
|\langle O \rangle' - \langle O \rangle| \le \epsilon. \tag{30}
$$

Wu, Zhang, and Yuan, arXiv:2409.04161

Zhang, Wu, and Yuan, arXiv:2411.16163

The ground-state energy estimation problem is perennial and fundamental problem for both physics and computer science studies.

Definition 1 (Local Hamiltonian problem). Given as input a k-local Hamiltonian \hat{H} acting on n qudits, specified as a collection of constraints $\left\{\hat{H}_i\right\}_{i=1}^r \subseteq \mathcal{H}(\mathbb{C}^d)^{\otimes k}$ where $k, d \in \Theta(1)$, and threshold parameters $a, b \in \mathbb{R}$, such that $0 \le a < b$ and $(b-a) \ge 1$, decide, with respect to the complexity measure $\langle H \rangle + \langle a \rangle + \langle b \rangle$:

- 1. If $\lambda_{\min}(\hat{H}) \leq a$, output YES.
- 2. If $\lambda_{\min}(\hat{H}) \geq b$, output NO.

Yet, the problem is proved to be QMA-complete¹, meaning inefficiency for quantum computing.

Definition 2 (Guided local Hamiltonian problem). Input: a k-local Hamiltonian \hat{H} acting on n qubits such that $\|\hat{H}\| \leq 1$ query-access to an initial state (density matrix) ρ_I *Promise:* $\|\Pi_0 \rho_I\| \geq \gamma$ Output: an estimate E'_0 such that $|E'_0 - E_0| \leq \epsilon$

The GLH is proved to be BQP-hard², meaning efficiently solvable.

```
1 Kiteav et al., (2002) 2Gharibian, Le Gall STOC (2023) 25/18
```
The local Hamiltonian problem corresponds to the ground-state problem

The guided local Hamiltonian problem corresponds to the ground-state problem with a nontrivial guiding state

Consider local Hamiltonians and dequantization of the partition function (exponential function of H)

Theorem 2. Suppose an R-configurational semi-classical quiding state $|\psi_c\rangle$ is given, and the condition in Eq. 4 holds. Then, there exists a classical algorithm to solve the GSEE problem with a runtime of

$$
\frac{R^2|S|}{\varepsilon} \text{poly}\left[\left(\frac{|S|}{\gamma^2 \beta \varepsilon [1 - \beta/\beta^*]} \right)^{\log(\beta^*/\beta)}\right],\tag{8}
$$

where $\beta = \Delta^{-1} \ln(\gamma^{-2} \varepsilon^{-1})$ and $\beta^* = (2e^2 \mathfrak{d}(\mathfrak{d} + 1))^{-1}$. The algorithm is efficient when $\beta < \beta^*$, which corresponds to the accuracy limit:

$$
\varepsilon > \varepsilon^* = 2e^2 \mathfrak{d}(\mathfrak{d} + 1). \tag{9}
$$

Theorem 3. Let the semi-classical guided state $|\psi_c\rangle = U |0^n\rangle$ that is prepared by a constant-depth quantum circuit U and $\gamma = 1/\sqrt{2}$. Suppose H representing a k-local Hamiltonian defined on a O(1)-dimensional lattice. Let the similarity-transformed Hamiltonian $H' = U^{\dagger} H U$ and the maximum degree of its corresponding interaction graph be denoted as \mathfrak{d}' . Then, if the condition in Eq. (4) holds, there exists a classical algorithm that solves the GSEE problem with a run time

$$
\left[\frac{e^{2\pi\beta/\beta^*}}{\beta\varepsilon^2} \text{poly}(|S|)\right]^{e^{2\pi\beta/\beta^*}},\tag{11}
$$

where $\beta = \Delta^{-1} \ln(\gamma^{-2} \varepsilon^{-1})$, and $\beta^* = (2e^2 \mathfrak{d}'(\mathfrak{d}' + 1))^{-1}$.

Zhang, Wu, and Yuan, arXiv:2411.16163

TABLE I. Comparisons of our results with related previous studies on solving the GLH problem, focusing on accuracy, input constraints, and computational time complexity.

Can we achieve quantum advantage with near-term hardware?

Classically Easy:

- 2D superconducting system with a constant time
- Noisy quantum circuits with constant noise
- Ground state estimation for constant gap 2D Hamiltonian with constant accuracy

We may achieve quantum advantage with near-term hardware

Classically hard:

- 2D superconducting system with time \sim qubit number
- Quantum system with all-to-all connection
- Noisy quantum circuits with noise rate $\sim 1/g$ ate number
- Ground state estimation for (polynomially) small gap 2D Hamiltonian with high accuracy

Thanks!

