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Algorithms designed for universal qguantum computers

Dynamic problems: Schrodinger equation —— ) —iH|y)
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Static problem: find the eigenstates of H
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Dequantization for these quantum algorithms

Main Questions: S Bravyi, D Gosset, R Movassagh

1. Classical simulation of 2D quantum system dynamics: Nature Physics 17 (3), 337-341 (2021)
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2. Dequantization of the ground-state energy estimation (GSEE) algorithm

Ghribian and Le Gall, STOC 2022
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1. Classical simulation of 2D quantum system dynamics

Wu, Zhang, and Yuan, arXiv:2409.04161



Understanding 2D Hamiltonian is significant

2D Hamiltonian Problems:

Theoretical perspective: quantum and anomalous Hall effects, superconductivity and magnetism

Applications: design 2D superconducting quantum computers, design functional materials such as electronics
and sensors

Ground State Properties 2D Fermi-Hubbard Model Superconducting Quantum Chip
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Popular classical methods (such as MPS and PEPS) may face difficulties in tensor contraction and normalization.



Constant depth 2D quantum circuit simulation

One can efficiently calculate expectation values from constant depth 2D quantum circuits

R,(1) SUPP(VR,U))

(d) —vvg:“\g"".' § 009 90 O @ @ )OO O o € ] 3|V (Ra)]07)
'@} o o0 ! 55 : - 0"V (R V(R5)|0™) = T Pl ke .
" 0@ % -4 - E - Alt) = ;< [V (R1)|z)(z|V (R2)|0™) = ;p(’)cﬂwumnow
Vi i o0 | oo '® @ )
; § : 00e E p(z) = (0" |V (R1)|z)|",
5 00000000 0O BOOOT LX)
V(R,) V(R,)

|0> D )i 6—iAtZ

S Bravyi, D Gosset, R Movassagh, Nature Physics 17 (3), 337-341 (2021)

O—
AN
\VV

=

~




2D quantum system dynamics

Main Question:
Classical simulation of 2D quantum system dynamics:
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Problem 1 (K-step Quantum Dynamics Mean Value). Consider K local Hamiltonians {H () H@) ... H (K)}
defined on a 2D plane, and a global observable O = O ® --- ® Oy, with the operator norm ||O;|| < 1 for i € [n].
The K-step quantum mean value is defined by

: f :
K e
'“l({) _ <0"| (H Pul(k)l"‘) %) (H eil!(k)f,;,;) l()n)’ (1)

=1 k=1

where evolution time series t = {ty,--- ,tg} (Fig. 1. a). The target is to provide an estimation fi(t) such that
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Main Result

Classical simulation of 2D quantum system dynamics:

Result: Given K Hamiltonians {H, ..., Hx} defined on a two-dimensional Plane with n qubits, any observable
0=0,Q Q& 0, with ||0;]|| < 1, and time series {t4, ..., tx} with |t;| < O(1), there exists a classical
algorithm that outputs a e-approximation to (0™ |e'1t1 . etk ge~tHrtk  e~tHit1|Qn) jn n0(e"‘log(n/e)
running time, with t = max{t}.
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Algorithm Outline
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Classical simulation of 2D quantum system dynamics

Let U = e~ Uktk  o~lHils

Observe that

u(?) = (0™ut (0, ® - ® 0,)U|0™) = (0*|(Ut0,U) ... (UT0,U)|0™)

Step 1: Using the Cluster Expansion method to approximate V; = UTO,U for i € [n], where V; is limited into a 2M X2M

area with M < 0(eXtlog(n/e))
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Step 1: Cluster Expansion:

Consider the Cluster Expansion:
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Fact 1: when the cluster V is disconnected, the commutator vanishes to 0O; ®

Fact 2: the number of connected cluster V with size m is at most 0((eo)™) (o = 0(1));

Fact 3: H[hv(l), ) [hV(m): 01”” < 2™||0;]|; ® o o o o

Result 1: Let the time |t| < t* = 1/(2e0), then the cluster expansion of et 0,e "¢ can be truncated up to the order M <
O(log(1/e(1 — 2teo))).

Result 2: Consider more general scenarios where U = e~tfktk  e~tHit1 the cluster expansion of UOiUJr can be approximated
by
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Step 1: Cluster Expansion:

Using the analytical continuation method, we can extend above results to general |max{t,}| < 0(1)

Lemma 4 (Informal). Given a single qubit observable O;, then for any K-step quantum dynamics driven
by {HD, ... HE)Y and corresponding constant time parameters {ti,--- ,tx}, the operator U;(t) =

Hszl etH Pt ), Hile e~ "tk can be approzimated by an operator Vi(t) such that ||U;(t) — Vi()|| < €/2L.
Here, V;(t) represents a[]\/[ =0 (e”“’Kolog(ZL/e))—order] truncated cluster expansion given by Eq. (),
0 represents the mazimum degree of interaction graphs induced by Hamiltonians {HWY, ... HUE)} and
t = max{ty}. Meanwhile, we have

| QM) < supp(V;(1)) < O(4M?).| (D1)

Wu, Zhang, and Yuan, arXiv:2409.04161 1



Step 2: local approximations:

Let U = e tHktk  g~iHils
Observe that u(%) = (0™UT(0; ® - ® 0,)U|0™) = (0™|(UT0,U) ... (UT0,U)|0™)
Step 2: Assign operators {V/;} into two groups V(R;), V(R,), which are easy to simulate classically

(d) :
I aae 5 " W \ {z|V(R2)|0™)

T xr

Vi
- p(z) = [(0"|V (Ry)|z)|%,

S Bravyi, D Gosset, R Movassagh
Nature Physics 17 (3), 337-341 (2021)

Lemma 7. Given the operator Vg, )(t) defined as Eq. D/, for any for x € {0,1}", there exists a classical
algorithm that can deterministically output (x|Vg, )(t)|0") within C(n) < O <\/ﬁ24MQ) running time.

Wu, Zhang, and Yuan, arXiv:2409.04161 12



Classical simulation of 2D quantum system dynamics

Combine all together, we have

Theorem 1. Given K Hamiltonians {H ; K)} defined on a 2D plane with n qubits, any observable
O=01®---®0r with ||O;|| <1 and lomhfy L < n, and a time series t = (t1,--- ,tx), there exists a classical
algorithm that outputs an approzimation fi(t) such that ’ p(t) — F)| < € with a run time of at most

e2meKot log(2L/(,)
Yl (2L> - (2)
6

€

where t = 111;1)<{sz.}~k}_<:1 and 0 represents the maximum degree of the related interaction graphs.
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A Brief Summary

Constant depth, 2D [S. Bravyi, Nat. Phys, 2021] Mean value Poly(n)
Constant depth, 3D [S. Bravyi, Nat. Phys, 2021] Any Mean value 0(2" )
Constant depth [S. Bravyi, STOC, 2024] Positive semidefinite Probability distribution O(nlog ™
Constant depth [R. L. Mann, PRXQuantum 2024] Close to Identity Mean value Poly(n)
Constant time Hamiltonian dynamics, 2D Any Mean value 0(n'os™)
Applications:

(1) 2D Guided Local Hamiltonian problem (with symmetry);
(2) Simulating shallow-depth 2D analog quantum computation;
(3) Simulating 2D VQE and QAOA algorithms

(4) Simulating 2D short time Adiabatic Evolution
(e)

H(s) = sH; + (1 — s)H,
2l L O,
O il & - ] :c:herk MNEWES / \
| . 0"y — U@y ;
i e | Ho Hy
Lpdate aramstse
2D Ground State Energy Superconducting QC VQE and QAOA Adiabatic QC

Wu, Zhang, and Yuan, arXiv:2409.04161 1



Applications 1: 2D Guided Local Hamiltonian Problem

Definition 2 (Guided local Hamiltonian problem). Input: a k-local Hamiltonian H acting on n qubits such that

|H|| <1 query-access to an initial state (density matriz) py
Promise: ||ppr|| >

Output: an estimate E| such that |E)j — Fo| < €
The GLH is proved to be BQP-hard!, meaning efficiently solvable.
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1 Gharibian, Le Gall STOC (2023) 15/18



Applications 1: 2D Guided Local Hamiltonian Problem

First define the spectrum function of the initial state as follows1

N-1
P(z):= ) p;é(z— E;),
3=0
where p; = |¢;|?. Then, define the convolution function

C(z): = (f * P)(z)

N-1 o N-1
=(Px*f)(z) = ij/_ 6(t — Ej)f(x —7)dr = ij'f(x—Ej)-

The function can be estimated in a probabilistic way:
C(m) — / f(t)ezﬂil't Tr (pe—2m'Ht) dt,

f(t) is the Fourier transformation of f(x).

1 Tong, Lin PRX Quantum (2022). 16/18



Applications 1: 2D Guided Local Hamiltonian Problem

Key to dequantization: ability to

Quantum Hamiltonian
approximate Tr (pe—mHt)

@
\ Quantum computer Ancilla-free Hadamard test:
@ 0y — | v B g B = Using symmetry
I e “HH Q) = |Q).
|¥) e itnH ]
—tHt _ —tHt
(t }N Hadamard test circuit € |¢1> - _2 (|Q> te |¢c>) .
Then,

(e 2DV,
Re [(cle™[the)] = (shrle™™* (J) (el + [e)(Q) €™ Jah1),

Im [(3ele™"|9pc) ]| = i(le™™ (1Y) (Qf — [Q)(wel) e [¢hn).

AN
» Energies
Search and block _ _
_ The Loschmidt echo is transformed
Classical computer .
into @ quantum mean value problem
Courtesy: Ding et al., 2024 17/18
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Applications 1: 2D Guided Local Hamiltonian Problem

Corollary 2. Given a 2D geometrical local Hamiltonian H that satisfies certain symmetry, and a correspond-
ing classical initial state |Y.) with R configurations which has py overlap to the ground state. There exists a
classical algorithm that can output d-approximation to the ground state energy with the run time of

O ((an)eﬂpo!‘” log(2Rn)+O(1)> | (7)

where f(po,d) < O log(6 pgh)).

TABLE 1. Comparisons of our results with related previous studies on solving the GLH problem, focusing on accuracy, input
constraints, and computational time complexity.

Algorithm Method Accuracy Constraints Complexity
Ref: [-)l ~)~] € 1 k'local’ “H” <y BQP lek
efs [24, 25 — = v 1 e -complete
TO) 1S (poly('n)’1 poly(n))
Ref [23] Dequantized QSVT e=0(1) s-sparse, |H|| <1 O (7_4(|S| 25 4 1)(2+4/e) log(l/'y))
Ref [26] Dequantized QSVT e|l|H|| = O(|H||) k-local (O(1))los(1/7)/e
Ref [29] |Dequantized 2D Dynamics e=0(1) k-local, 2D Symmetry O (nelog(l/ 7)/€ log ")

Wu, Zhang, and Yuan, arXiv:2409.04161 18/18



Applications 2: Simulate Analog 2D QC

Corollary 3 (Simulate Superconducting Quantum Computation). Consider a \/n X \/n lattice graph
G = (V, E), where vertex set V represents the qubit array and E represents the qubit connection set. The analog

. . g - T . . -
superconducting quantum computation can achieve e in each layer, with H = Z(i,j)e g hij, operator norm
|hijll < 1 andt < O(1). Any K < O(loglogn)-layer analog superconducting quantum computation can be
stmulated by a classical algorithm with a quasi-polynomial running time in terms of the system size n.

U(Q) — e—iH(G)t

Wu, Zhang, and Yuan, arXiv:2409.04161 19/18



Applications 3: Simulate 2D VQE Algorithm

Corollary 4 (Dequantization Quantum Variational Algorithm). Given a 2D Fermi-Hubbard model defined

on a (ng Xny)-sized lattice, a p-depth Hamiltonian Variational ansatz with parameters {tq()]), tg), tgj)};’:l € [—m, w|%P
and a slater determinant initial state, a e-approximation to the VQE enerqy function can be simulated by a classical

2,
Angny, ( 2L )64” °P® log(2L/e)

algorithm with a run time O ( 5 - , where the constant 0 represents the mazrimum degree of

the interaction graph induced by 2D Fermi-Hubbard model and the locality L < 8.
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Wu,-Zhang,-and-Yuan,-arXiv.2409.04161 20/18



Application 4: Simulating short-time adiabatic dynamics

Given a one-parameter family of Hamiltonians
H(t):=(1—-t)Hy+tH, for t € [0,1]

The family of Hamiltonian describes a smooth adiabatic path such that a constant gap is
promised. o
The adiabatic evolution is given by U(t) = Te *Jo H(s)ds,

where T is the time-ordering operator.

The adiabatic theorem guarantees that for a slow enough evolution, a state initialized to
the ground state of Hy will persists as the ground state of the instantaneous eigenstate.

Our goal is to estimate the properties of the observable 0 of the ground state of H; to
accuracy e:

[(0) = (0)| <«

We assume that the ground state of H, is a product state.
Wu, Zhang, and Yuan, arXiv:2409.04161 21/18



Application 4: Simulating short-time adiabatic dynamics

Theorem 3 (Time-dependent cluster expansion). Given O(t) = Te Jo H&)ds T e=i Jo H()ds it cluster ex-
pansion 18

+OO . "’V
— Jim Y (—it)™ A
O(t)—]\}l_r)noo M E W T E E [hX( ) nmat Xo(m))
m=0 VECm,V:(Xl,,Xm) ,N1= OO'EP

(13)
[th(l)f(n17t7Xa(l))7O:|7"':|]) )
2=(0,+ ,0)

where Ax (t) = Ax (£)+t Ny () with Ny (t) = RO XV =TT, MV ) V=T, o pv (X)), f(m, t, X) =

0 N .
Zxtna) and Zx(t) = —itAx(t).

Wu, Zhang, and Yuan, arXiv:2409.04161 22/18



Application 4: Simulating short-time adiabatic dynamics

Theorem 4. Given a family of Hamiltonians H(t) := (1 — t)Hy + tHy, for t € [0,1] with 0 the mazimal

degree of the interaction graph, and an observable O, let U(t) = Te~iJo H(S)ds pe the Hamiltonian evolution
operator of the family of Hamiltonians with evolution time t. Then, for any t < t* = ﬁ, there exists an
algorithm with the run time

1og(”—5”(t/t*—1))

g log (7% /7)
poly (Mtzet ) (29)
¢
that outputs an estimation (O)' to (O) := (| UT(t)OU(t) |1b) for some product state |1)) within € accuracy:
[{0) —(0)| <. (30)

Wu, Zhang, and Yuan, arXiv:2409.04161 23/18



2. Dequantization of the GSEE algorithm

Zhang, Wu, and Yuan, arXiv:2411.16163
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Applications 1: 2D Guided Local Hamiltonian Problem

The ground-state energy estimation problem is perennial and fundamental problem for both physics
and computer science studies.

Definition 1 (Local Hamiltonian problem). Given as input a k-local Hamiltonian H acting on n qudits, specified

as a collection of constraints {I:Iz} CH ((Cd’)®k where k,d € O(1), and threshold parameters a,b € R, such that
i=1

0<a<band (b—a)>1, decide, with respect to the complexity measure (H) + (a) + (b) :

1. If Amin(H) < a, output YES.

A

2. If Amin(H) > b, output NO.

Yet, the problem is proved to be QMA-completel, meaning inefficiency for quantum computing.

Definition 2 (Guided local Hamiltonian problem). Input: a k-local Hamiltonian H acting on n qubits such that
|H|| <1 query-access to an initial state (density matriz) pr
Promise: ||Iopr|| >~

Output: an estimate E| such that |E)y — Fy| < €

The GLH is proved to be BQP-hard?, meaning efficiently solvable.

1 Kiteav et al., (2002) 2Gharibian, Le Gall STOC (2023) 25/18



Dequantization of the GSEE algorithm

The local Hamiltonian problem corresponds to the ground-state problem

The guided local Hamiltonian problem corresponds to the ground-state problem with a nontrivial guiding state

Local Hamiltonian problems

Guided local Hamiltonian problem

26
1Ghribian and Le Gall, STOC 2022; Zhang, Wu, and Yuan, arXiv: XXX



Dequantization of the GSEE algorithm

Consider local Hamiltonians and dequantization of the partition function (exponential function of H)

(a) Dy(H — z)
—— Dyy(H—-2z) W HHH A
§ R(z)
s =1
S /// ‘_QS
e= et £
© - ”
+ e B R
L>|j 0 - % 0 0 .
P S —
Ea E(,) EO — 6
x (Energy) Re(2) Re(B¢(2))

27
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Dequantization of the GSEE algorithm

Theorem 2. Suppose an R-configurational semi-classical guiding state |1.) is given, and the condition in Eq. / holds.
Then, there exists a classical algorithm to solve the GSEE problem with a runtime of

R2? K ( S| )log(ﬂ"/ﬂ)
6 pdy! 2Bell — B ’ )

where B = A~ 1In(y2%¢71) and B* = (2¢*0(0 + 1)) !
the accuracy limit:

. The algorithm s efficient when B < 8*, which corresponds to

e>e* =20 +1). (9)

Theorem 3. Let the semi-classical guided state |1p.) = U |0™) that is prepared by a constant-depth quantum circuit

U and v = 1/v2. Suppose H representing a k-local Hamiltonian defined on a O(1)-dimensional lattice. Let the
similarity-transformed Hamiltonian H' = UTHU and the mazimum degree of its corresponding interaction graph be

denoted as o'. Then, if the condition in Eq. (1) holds, there exists a classical algorithm that solves the GSEE problem
with a run time

cZﬂﬁ/H*

o278 /5"
(| (11)

where B = A~ In(y2¢71), and B* = (2¢*0'(0' + 1)),
Zhang, Wu, and Yuan, arXiv:2411.16163 -



Dequantization of the GSEE algorithm

TABLE 1. Comparisons of our results with related previous studies on solving the GLH problem, focusing on accuracy, input
constraints, and computational time complexity.

Algorithm Method Accuracy Constraints Complexity
Ref: [l)l .)-—] 1 k'loca‘l7 “H” <1, BQP Tk
efs [24, 25 — = i 1 T -complete
poly(n)  ~ € (—poly(n) ,1 —poly(n))
Ref [23] Dequantized QSVT e=i0(1) s-sparse, ||H|| <1 O (7—4(|S| 25 4 1)(2+4/€) log(l/’v))
Ref [26] Dequantized QSVT e||H|| = O(||H||) k-local (O(1))loe(1/1)/e
Ref [29] |Dequantized 2D Dynamics e=0(1) k-local, 2D Symmetry O (nelog(l/“/)/e logn)
Theorem 2 Dequantized RQITE e> e%=1(1) k-local e Ipoly [(|S| A2y—2¢—1)log(A /(2" l°g(7_25_1)))]
Corollary | Dequantized RQITE e>e*/||H| k-local, H = H/||H|| -
Theorem 3 |  Dequantized RQITE e=0(1) k-local, v > 1/v/2, 0 ( (Ae~2poly(] Sl))elogu/usz))m
O(1)-dimension
k-local, v > 1//2,
Corollary 2 Dequantized RQITE e=0O(1/||H||) H=H/|H|, -

- O(dimension

29

Zhang, Wu, and Yuan, arXiv:2411.16163



Can we achieve quantum advantage with near-term hardware?

Classically Easy:

2D superconducting system with a constant time

* Noisy quantum circuits with constant noise

 Ground state estimation for constant gap 2D Hamiltonian with constant
accuracy

30



We may achieve quantum advantage with near-term hardware

Classically hard:

e 2D superconducting system with time ~ qubit number

* Quantum system with all-to-all connection

e Noisy quantum circuits with noise rate ~ 1/gate number

 Ground state estimation for (polynomially) small gap 2D Hamiltonian with
high accuracy

31
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