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Sequence Modeling

How can one efficiently model sequential data?

▶ Translation. . .

▶ Time series modeling. . .

▶ Chatbots!
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Large Language Models

▶ Recent breakthroughs using large language models

A. Norouzi, Level Up Coding (2023)
3 / 31

https://levelup.gitconnected.com/the-brief-history-of-large-language-models-a-journey-from-eliza-to-gpt-4-and-google-bard-167c614af5af


Large Language Models

▶ Driving factor: efficient representability of long-range correlations
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Can quantum models represent certain long-range correlations efficiently?

H. Shen, arXiv:1905.04271 [cs.LG]
4 / 31

https://arxiv.org/abs/1905.04271


Large Language Models

▶ Driving factor: efficient representability of long-range correlations

100 101 102

Temporal distance τ

10−4

10−3

10−2

10−1

M
u

tu
al

in
fo

rm
at

io
n
I
(τ

)

(a) Vanilla RNN

2

4

8

16

32

8×2

8×3

Training

0 200 400
10−4

10−3

10−2

10−1

100 101 102

Temporal distance τ

10−4

10−3

10−2

10−1

M
u

tu
al

in
fo

rm
at

io
n
I
(τ

)

(b) LSTM

2

4

8

16

32

8×2

8×3

Training

0 200 400
10−4

10−3

10−2

10−1

100 101 102

Temporal distance τ

10−4

10−3

10−2

10−1

M
u

tu
al

in
fo

rm
at

io
n
I
(τ

)

(a) Binary Sequence

4

8

16

32

64

16×3

16×5

Training

0 200 400
10−4

10−3

10−2

10−1

Can quantum models represent certain long-range correlations efficiently?

H. Shen, arXiv:1905.04271 [cs.LG]
4 / 31

https://arxiv.org/abs/1905.04271


Outline

(The Problem With) Quantum Neural Networks

How Can Quantum Contextuality Help?

Numerical Simulations
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Quantum Machine Learning (QML)

▶ Quantum neural networks

▶ Broadly: parameterize quantum circuit U (θ), optimize loss function

f (θ) = Tr
(
U (θ) ρU (θ)†O

)
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E. Farhi and H. Neven, arXiv:1802.06002 [quant-ph]
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https://arxiv.org/abs/1802.06002


Quantum Neural Networks

Powerful? Trainable?

8 / 31



Quantum Neural Networks

Powerful? Trainable?
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1Y. Liu et al., Nat. Phys. 17, 1013 (2021); E. Gil-Fuster et al., arXiv:2406.07072 [quant-ph].
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Quantum Neural Networks
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Sidestepping Untrainability

▶ Generally: exploring an exponentially large Hilbert space is hard

▶ What about polynomially-sized subspaces?

J. J. Meyer et al., PRX Quantum 4, 010328 (2023)
9 / 31

https://doi.org/10.1103/PRXQuantum.4.010328


Sidestepping Untrainability

▶ Unfortunately, quantum advantage less obvious due to constrained Hilbert space

▶ Few cases where there is an advantage seem very specific

M. Cerezo et al., arXiv:2312.09121 [quant-ph]
10 / 31

https://arxiv.org/abs/2312.09121


Wishlist

Can we balance:

▶ Efficient trainability?

▶ “Large” quantum-classical separation?

▶ Physical intuition?

▶ Constructive proofs?
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Outline

(The Problem With) Quantum Neural Networks

How Can Quantum Contextuality Help?

Numerical Simulations
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Sequence Modeling: Translation Tasks

▶ Translation task: sample from p (y | x) to finite relative entropy

▶ Example:

My name is Eric.
Me llamo Eric. −→

I call myself Eric.
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Autoregressive Models for Sequence Modeling

Autoregressive sequence model: RNNs, LSTMs, Transformer decoders, . . .
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▶ Modeling of long-time correlations via “memory” λi

▶ Measure of “separation”: classical vs. quantum memory needed to represent data

▶ Bonus: want Fi to be low-depth (online learning setting)
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k-Hypergraph Recurrent Neural Networks

▶ Consider: Fi degree-(k − 1) polynomials in λi−1

▶ Quantize dynamics: k-HRNN

▶ Turns out: equivalent to sequentially measuring hypergraph state stabilizers

15 / 31



k-Uniform Hypergraph States

Graph state associated with G = (V ,E ):

|ψ⟩ =
∏
e∈E

CZe |+⟩⊗n

M. Rossi et al., New J. Phys. 15, 113022 (2013)
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k-Uniform Hypergraph States

Graph state stabilizers:

sv = Xv

∏
v ′∈E⊥v

Zv ′

M. Rossi et al., New J. Phys. 15, 113022 (2013)
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k-Uniform Hypergraph States

Hypergraph state stabilizers:

sv = Xv

∏
v ′∈E⊥v

Ck−2 Zv ′

M. Rossi et al., New J. Phys. 15, 113022 (2013)
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k-Hypergraph Recurrent Neural Networks

Efficiency:

▶ CV: dynamics under poly (n)-sized Lie algebra =⇒ efficient trainability!2

▶ Each stabilizer measurement can be done in log (n) depth

2ERA, arXiv:2408.11901 [quant-ph].
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https://arxiv.org/abs/2408.11901


k-Hypergraph Recurrent Neural Networks

Expressivity:

▶ Stabilizers are extremely contextual

19 / 31



Quantum Contextuality

Measuring observables ̸= “revealing” hidden
classical assignments!

S. Kochen and E. Specker, Indiana Univ. Math. J. 17, 59 (1968)
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Quantum Contextuality

k = 2 example:

X1 · X2 · X1X2 = +1
· · ·

X1Z2 · Z1X2 · Y1Y2 = +1
· · ·
Z2 · Z1 · Z1Z2 = +1
q q q
+1 +1 −1

▶ Can classical variable assignments do this?
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Example of Quantum Contextuality

Classical attempt:

1 · 1 · 1 = +1
· · ·
1 · 1 · 1 = +1
· · ·
1 · 1 · 1 = +1
q q q
+1 +1 +1
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Example of Quantum Contextuality

1 · 1 · 1 = +1
· · ·
1 · 1 · 1 = +1
· · ·
1 · 1 · Z1Z2 = +1
q q q
+1 +1 −1

▶ “Value” of Z1Z2 depends if measured with observables in row or in column

▶ Quantum mechanics allows context-dependent values for observable measurements

▶ Classical simulation: forced to memorize measurement context!

23 / 31



Provable Expressivity Separation

▶ Input sequence x : O (n) hypergraph state stabilizers to sequentially measure

▶ Output sequence y : measurement outcomes consistent with quantum mechanics

Theorem (HRNN expressivity separation, informal)

Classical neural networks of width less than
(n
k

)
− 1 cannot perform this task to any

finite relative entropy.

▶ Alternatively: n vs.
(n
k

)
, n-party communication complexity separation where the

quantum parties are depth O (log (n))
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Simulations on Real-World Translation Tasks

Can view contextuality as a type of correlation present in empirical data which:

▶ Inhibits efficient classical representations

▶ Does not inhibit efficient quantum representations

S. Abramsky and A. Brandenburger, New J. Phys. 13, 113036 (2011)
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Simulations on Real-World Translation Tasks

Experimental test on realistic data set:

▶ Spanish-to-English translation

▶ ≈500,000 model parameters

▶ k = 2

ERA et al., PRX Quantum 4, 020338 (2023)
27 / 31

https://doi.org/10.1103/PRXQuantum.4.020338


Simulations on Real-World Translation Tasks

Input “Debemos limpiar la cocina.”
Truth “We must clean up the kitchen.”
CRNN “We must clean the kitchen.” ✓
GRU “We have to turn the right address.” ✗

Input “Admit́ı que estaba equivocada.”
Truth “I admitted that I was wrong.”
CRNN “I was wrong to say that.” ~
GRU “They had a thing to be true.” ✗

Input “¿Cual es el lugar más bonito del mundo?”
Truth “What’s the most beautiful place in the world?”
CRNN “What’s the world largest place?” ✗
GRU “What’s the best of is in?” ✗

Input “La caja es pesada.”
Truth “The box is heavy.”
CRNN “The box is heavy.” ✓
GRU “My box is.” ✗

28 / 31



Simulations on Real-World Translation Tasks
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Future Directions

▶ Ways to a priori evaluate data to see if amenable to quantum representation?

▶ Do our results give a useful quantum-inspired classical model?

▶ How amenable are these architectures to early forms of error-correction/mitigation
and experimental implementation?

30 / 31



Questions?

Thank you!

31 / 31
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