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Sequence Modeling

How can one efficiently model sequential data?

» Translation. ..
> Time series modeling. ..
» Chatbots!

Write a limerick about the status of ChatGPT.

ChatGPT is surely the best
But its servers are put to the test

With so many users chatting

It's no wonder they're lagging

But they'll fix it soon, no need to fret!
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Large Language Models

P Recent breakthroughs using large language models

1966 1966 Late 1980s - 1990s 2000s

ELIZA SHRDLU Statistical Language Neural Probabilistic
Models Language Model

2019 2018 2017 2013

GPT-2 BERT Transformer Modelsand ~ Word2Vec
and T5 Attention Mechanisms

Jan 2021 - Oct 2022

LaMDA, xlarge, Chinchilla, CodeGen,
InCoder, mGPT, PaLM, OPT-IML, Minerva

Feb 2023 Jan2023  Dec 2022  Nov2022

GoogleBard  wWebGPT ~ GPT35  ChatGPT
and LLaMa

Mar 2023 Apr 2023 May 2023

GPT-4 BloombergGPT, StableLM, PaLM2
Dolly 2.0, Titan, BingChat

A. Norouzi, Level Up Coding (2023)
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Large Language Models

» Driving factor: efficient representability of long-range correlations

(a) Vanilla RNN (b) LSTM (a) Binary Sequence
107! 107!
e e
= =
g g
<1072 21072
E
= =
ERUR RS
= =
= =
10744 T T 1074 . : 1074
10° 10" 102 10° 10! 102 10° 10! 10°

Temporal distance 7

H. Shen, arXiv:1905.04271 [cs.LG]

Temporal distance 7

Temporal distance
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Large Language Models

» Driving factor: efficient representability of long-range correlations

(a) Vanilla RNN (b) LSTM (a) Binary Sequence
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Can quantum models represent certain long-range correlations efficiently?

H. Shen, arXiv:1905.04271 [cs.LG]
4/31


https://arxiv.org/abs/1905.04271

Outline

(The Problem With) Quantum Neural Networks

How Can Quantum Contextuality Help?

Numerical Simulations
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Quantum Machine Learning (QML)

» Quantum neural networks

» Broadly: parameterize quantum circuit U (@), optimize loss function

F(8)=Tr (U(e)pU(e)T o)

2 Ui (61))

N\ /]

JJT)
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U(B) = UL(0L)Up_r(01-1) ... U1(6))

E. Farhi and H. Neven, arXiv:1802.06002 [quant-ph]
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Quantum Neural Networks

Powerful? Trainable?
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Quantum Neural Networks

Powerful? Trainable?

Yes!!

Y. Liu et al., Nat. Phys. 17, 1013 (2021); E. Gil-Fuster et al., arXiv:2406.07072 [quant-ph].
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https://doi.org/10.1038/s41567-021-01287-z
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Quantum Neural Networks

Powerful? Trainable?

Yes!! ... No

Y. Liu et al., Nat. Phys. 17, 1013 (2021); E. Gil-Fuster et al., arXiv:2406.07072 [quant-ph].
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Sidestepping Untrainability

» Generally: exploring an exponentially large Hilbert space is hard

» What about polynomially-sized subspaces?

Data symmetry Physical considerations

Embedding

v
‘E’P Unitary representation
\7 ~— of symmetry

~

s— Us
Ansatz with J.
standard r 3
gateset Gate symmetrization

g — TU[X1:“1$—‘ZUSXUJ

SES

J. J. Meyer et al., PRX Quantum 4, 010328 (2023)

Ansatz with
cquivariant
gateset

— TulG]

9/31


https://doi.org/10.1103/PRXQuantum.4.010328

Sidestepping Untrainability

» Unfortunately, quantum advantage less obvious due to constrained Hilbert space

b) Effective Subspace

({UO)PUT(0)P;)*

B, ' B

» Few cases where there is an advantage seem very specific

M. Cerezo et al., arXiv:2312.09121 [quant-ph]
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Wishlist

Can we balance:
» Efficient trainability?
> “Large” quantum-classical separation?
» Physical intuition?
» Constructive proofs?
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Wishlist

we balance:
Efficient trainability?
“Large” quantum-classical separation?

Q)
)
=)

Physical intuition?

vvyyy

Constructive proofs?

Yes!

Arbitrary Polynomial Separations in Trainable Quantum Machine
Learning

Eric R. Anschuetz*! and Xun Gao?

11/31



Outline

How Can Quantum Contextuality Help?
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Sequence Modeling: Translation Tasks

» Translation task: sample from p(y | x) to finite relative entropy

> Example:

My name is Eric.
Me llamo Eric. —
| call myself Eric.
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Autoregressive Models for Sequence Modeling

Autoregressive sequence model: RNNs, LSTMs, Transformer decoders, ...
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Autoregressive Models for Sequence Modeling

Autoregressive sequence model: RNNs, LSTMs, Transformer decoders, ...

» Modeling of long-time correlations via “memory” \;
» Measure of “separation”: classical vs. quantum memory needed to represent data
» Bonus: want Fj to be low-depth (online learning setting)
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k-Hypergraph Recurrent Neural Networks

» Consider: F; degree-(k — 1) polynomials in A;_1
» Quantize dynamics: k-HRNN

|/\¢—1>§_ |A;)

| U

~—

m modes n modes

b b

» Turns out: equivalent to sequentially measuring hypergraph state stabilizers
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k-Uniform Hypergraph States

Graph state associated with G = (V/, E):
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M. Rossi et al., New J. Phys. 15, 113022 (2013)
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k-Uniform Hypergraph States

Hypergraph state associated with G = (V/, E):
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M. Rossi et al., New J. Phys. 15, 113022 (2013)
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k-Uniform Hypergraph States

Graph state stabilizers:
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M. Rossi et al., New J. Phys. 15, 113022 (2013)
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k-Uniform Hypergraph States

Hypergraph state stabilizers:

s=X J[ ¢?2z
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M. Rossi et al., New J. Phys. 15, 113022 (2013)
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k-Hypergraph Recurrent Neural Networks

Efficiency:

» CV: dynamics under poly (n)-sized Lie algebra = efficient trainability!?

» Each stabilizer measurement can be done in log (n) depth

i) |

S

U

m modes n modes

2ERA, arXiv:2408.11901 [quant-ph].

Ai)

b b
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k-Hypergraph Recurrent Neural Networks

Expressivity:

> Stabilizers are extremely contextual

M)

|M—1>§_ |A;)

U

m modes n modes

bid
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Quantum Contextuality

Measuring observables = “revealing” hidden
classical assignments!

S. Kochen and E. Specker, Indiana Univ. Math. J. 17, 59 (1968)
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Quantum Contextuality

k = 2 example:
X1
X125
2>

I
+1

21X
Z

+1

+1

+1

+1
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Quantum Contextuality

k = 2 example:
X1 - X - X1 X0
Xl'Zg : Zl'Xz : Yl'Yg
Z'2 . Z'1 ' 21'22
I I I

+1 +1 -1

» Can classical variable assignments do this?

+1

+1

+1
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Example of Quantum Contextuality

Classical attempt:

1 1 1 = +1
1 1 1 = +1
1 1 1 = +1

I I I
+1 +1 +1
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Example of Quantum Contextuality
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Example of Quantum Contextuality

Classical attempt:

1 - 1
1 - 1
1 -1
I I
+1 -1

+1

+1

+1
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Example of Quantum Contextuality

Classical attempt:

1 - 1
1 - 1
1 -1
I I
+1 -1

» No classical assignment possible!

+1

+1

+1
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Example of Quantum Contextuality

1 1 1 = +1
1 1 1 = +1
1 - 1 - 4z = +1
I I I
+1 +1 -1

> “Value" of Z1Z> depends if measured with observables in row or in column
» Quantum mechanics allows context-dependent values for observable measurements

» Classical simulation: forced to memorize measurement context!
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Provable Expressivity Separation

» Input sequence x: O (n) hypergraph state stabilizers to sequentially measure

» Qutput sequence y: measurement outcomes consistent with quantum mechanics
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Provable Expressivity Separation

» Input sequence x: O (n) hypergraph state stabilizers to sequentially measure

» Qutput sequence y: measurement outcomes consistent with quantum mechanics

Theorem (HRNN expressivity separation, informal)

Classical neural networks of width less than (}) — 1 cannot perform this task to any
finite relative entropy.

P Alternatively: n vs. (Z) n-party communication complexity separation where the
quantum parties are depth O (log (n))

24 /31



Outline

Numerical Simulations

25/31



Simulations on Real-World Translation Tasks

Can view contextuality as a type of correlation present in empirical data which:
» Inhibits efficient classical representations

» Does not inhibit efficient quantum representations

S. Abramsky and A. Brandenburger, New J. Phys. 13, 113036 (2011)
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Simulations on Real-World Translation Tasks

Experimental test on realistic data set:
» Spanish-to-English translation
» ~500,000 model parameters
> k=2

ERA et al., PRX Quantum 4, 020338 (2023)
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Simulations on Real-World Translation Tasks

Input
Truth
CRNN

GRU

“Debemos limpiar la cocina.”
“We must clean up the kitchen.”
“We must clean the kitchen.”
“We have to turn the right address.”

Input
Truth
CRNN

GRU

“Admiti que estaba equivocada.”
“| admitted that | was wrong.”
“l was wrong to say that.”
“They had a thing to be true.”

Input
Truth
CRNN

GRU

“i Cual es el lugar mas bonito del mundo?”
“What's the most beautiful place in the world?”
“What's the world largest place?”
“What's the best of is in?"

Input
Truth
CRNN

GRU

“La caja es pesada.”

“The box is heavy.”

“The box is heavy.”
“My box is."
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Simulations on Real-World Translation Tasks

2.5 T T ——————————
o ]

2.0F n=<26x23/2 Transformer -

1.5}

L (bits)

1.0

100 200 300 400 500

Effective memory
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Future Directions

» Ways to a priori evaluate data to see if amenable to quantum representation?
» Do our results give a useful quantum-inspired classical model?

» How amenable are these architectures to early forms of error-correction/mitigation
and experimental implementation?
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Questions?

Thank you!
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