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In the rapidly evolving field of quantum computing, the study of open quantum systems re-
mains crucial. Understanding the dynamics of these systems drives the development of better
quantum devices, error mitigation and error correction strategies. An open quantum system can
be represented by a density matrix that evolves according to the Gorini-Kossakowski-Sudarshan-
Lindblad master equation [1, 2]. When working with continuous-variable open quantum systems,
it is beneficial to transform the master equation into a partial differential equation describing
the evolution of a quasi-probability distribution [3]. In this work, we make use of the Husimi
Q-Function representation that evolves according to Fokker-Planck equations. Using this repre-
sentation, we are able to simulate open quantum systems using state-of-the-art physics-informed
neural networks (PINNs) [4, 5]. PINNs provide a powerful alternative to traditional numerical
approaches for solving differential equations such as finite difference and finite element schemes.
Unlike these traditional approaches, PINNs do not require costly evaluations on fine grids and can
incorporate experimental data. In this work, we train PINNs to solve several equations that gov-
ern the dynamics of the Husimi Q-Function. We evaluate the performance of several architectures
for PINNs and compare the obtained solutions to analytical solutions where possible. We further
demonstrate the effectiveness of the physics-informed neural networks by estimating observables,
including the average photon number and average displacement.
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