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We describe a reproducing kernel Hilbert space
(RKHS) containing the set of functions computed by
variational quantum algorithms (VQAs) and develop
an algorithmic framework which exploits the RKHS
structure to construct local approximations in param-
eter space. After outlining the general method, we de-
scribe three applications.

Method

We consider functions of the form f : Rm → R,
θ 7→ ⟨ψ(θ)|M|ψ(θ)⟩, where M ∈ C2n×2n is an observ-
able and |ψ(θ)⟩ = Cm+1Rm(θm)Cm · · ·R1(θ1)C1|0⟩⊗n,
where C1, . . . , Cm+1 are n-qubit unitaries and each

Rj(θj) = exp
(
−i θj2 Gj

)
is a rotation, where Gj ∈

C2n×2n is Hermitian with set of Eigenvalues {−1, 1}
(e.g., Gj could be a non-identity Pauli string).

The function f is contained in H, where H is the
set of all functions g : Rm → R of the form g(z) =∑

ω∈{−1,0,1}m cωe
iω⊺z with c−ω = cω ∈ C for all ω.

RKHS Structure When equipping H with the
(real) inner product given by

⟨g1, g2⟩H =

∫
[−π,π]m

g1(z)g2(z)dz, g1, g2 ∈ H,

it turns out that H carries the structure of an RKHS
with kernel K =

(
3
2π

)m
K̃, where

K̃(x, z) =

m∏
j=1

1 + 2 cos(xj − zj)

3
, x, z ∈ Rm.

Approximations of f If p1, . . . , pD ∈ Rm are points
in parameter space, then the linear system of equations(

K̃(pi, pj)
)
1≤i,j≤D

· η̃ = (f(p1), . . . , f(pD))⊺

has at least one solution η̃ ∈ RD. We then define a
classical approximation f̃ : Rm → R to f , given by

f̃(θ) =

D∑
j=1

η̃jK̃(pj , θ).

This approximation is natural in the sense that f̃ co-
incides with f on {p1, . . . , pD} and f̃ is the orthogonal
projection (wrt. ⟨·, ·⟩H) of f onto the subspace of H
spanned by K(p1, ·), . . . ,K(pD, ·).

Applications

Classical Surrogates 1 Given a point θ0 ∈ Rm in
parameter space, we build a local approximation f̃ of f
around θ0 by choosing p1 = θ0 + q1, . . . , pD = θ0 + qD
to be the elements of the set θ0 +

{
−π

2 , 0,
π
2

}m
with

the property that at most L entries of the qj are non-
zero, where 0 ≤ L ≤ m. Here, L is a hyperparameter
controlling the order of the approximation. Computing
this approximation does not require more circuit eval-
uations than computing the L-th order Taylor polyno-
mial using the parameter-shift rules. We give exper-
imental and theoretical evidence that our approxima-
tion outperforms the L-th order Taylor polynomial.

Denoising Gradient Descent 2 When carrying out
a gradient descent step using the parameter-shift rules
at a point θ ∈ Rm in parameter space, a quantum de-
vice is used to evaluate f at the 2m coordinate-wise
shifts by ±π

2 at θ. To counter the resulting noise, we
carry out a gradient descent step wrt. a local approx-
imation f̃ (instead of wrt. f) which is constructed to
mitigate effects of the former, by also using the ±π

2 -
shifts from the previous ℓ−1 iterations in combination
with regularization of the kernel matrix. Here, ℓ ≥ 1
is a hyperparameter. We give experimental evidence
that our algorithm outperforms gradient descent in the
presence of both shot noise and (simulated) quantum
hardware noise, without requiring more circuit evalua-
tions.

Optimization Problem for VQAs 3 When aim-
ing to minimize f , a common technique is to compute
a local approximation around a given point θ0 ∈ Rm in
parameter space and subsequently perform one (or sev-
eral) optimization step(s) with respect to this approx-
imation. Examples of this are gradient descent via the
parameter-shift rules (linear approximation) and quan-
tum analytic descent (trigonometric approximation co-
inciding with f up to second order). We use this tech-
nique with the L-th order approximation f̃ around θ0
described above. However, ±π

2 -shifts are replaced by
± 2π

3 -shifts, since this makes the kernel matrix trivial
to invert and hence significantly reduces the classical
computational overhead. We compare this to gradient
descent (for L = 1) and to quantum analytic descent
(for L = 2).
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