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The Pretty Good Measurement (PGM) classifier

Given an ensemble of possible quantum states with their respective a-priori probabilities R =
{(p1, ρ1), . . . , (p`, ρ`)}` no known analytical description exists for the exact optimal measurement for

discriminating the states inR. However, the so-called PGM [1] performs well in several situations. The
average state ofR is given by: σ =

∑`
i=1 piρi and for any i : 1 ≤ i ≤ `, operatorsEi = (σ†)1/2piρi(σ†)1/2

σ† is the pseudoinverse (orMoore-Penrose inverse) of σ. Now, let us consider that each object ρi is the

quantum centroid, obtained as
∑n

j=1 ρ
j
i , where ρ

j
i represents the quantum encoding of classical objects

belonging to class i (and n is the cardinality of class i). Given an unknown object ρ from the test set,
the quantity Tr(Eiρ) represents the probability that ρ belongs to class i. By applying a majority rule
over all i ∈ [1, `], we classify ρ [3,5,6].

Figure 1. Illustration of the QI classification procedure. (a) Construction of quantum centroids using the feature map.

The three classes of objects (classical data) are represented as three different types of geometric figures (red balls, blue

triangles, and red pentagons). Under the action of the encoding map (blue arrows), the different classes are transformed

into quantum states (centroids), in the form of density operators. In principle, the number of classes and the number of

elements in each class can be arbitrary. (b) An unknown object is compared with the quantum centroids. Classification

is performed using the PGM classifier: an unknown object (represented by a blue question mark) is identified by a red

pentagon.

Performances of PGM classifiers

Figure 2. Heatmap of the values of each classifier applied to each dataset. Biclastering map: percentage of datasets for

which the balanced accuracy of classifier A (in the column) outperforms that of classifier B (in the row). Darker (lighter)

color indicates higher (lower) percentage.

Figure 3. After the encoding of each real object into a density operator ρ, we apply the tensor copy of ρ, i.e. ρ ⊗ ...ρ. This
strategy turns out to produce an increasing of the performances of the PGM classifier.

Representing PGM classifier in IBM-Q

WeuseNeumark’s dilation theorem, which allows us to transform anyPOVM into the composition of

unitary operators. In particular, the PGM can be represented as a suitable combination of quantum

gates that can be implemented in a quantum circuit.

Figure 4. The circuit that implements the PGM in IBM-Q simulator. This circuit only contains C-Not gates (indicated by

the usual representation) and rotations Ri(n) along a given direction i(x, yor z) of a given angle n.

Applying PGM classifier for Clonogenic Essay evaluation

A clonogenic assay is a quantification technique of the survival degree of in vitro cell cultures, which

is based on the ability of a single cell to grow and form a colony of cells after a given treatment. The

purpose is to count the number of the colonies. Actually, many strategies to count the number of the

colonies are by hands. Recent results show how by a classification between “pixel x belongs to the

colony” and “pixel x belongs to the background” it is possible to have information about the number of

the colonies. It allows us to move to a standard classification problem [2,4]. Each cell line is given by

30 different pictures (30 different datasets), each picture is given by 90601 pixels (301 x 301 square

picture). In total we deal with more than 10 millions of data (large dataset). Further, each pixel is

featured not only by its position in the image but also by important biological features: homogeneity,

correlation, energy, contrast, RGB, LUV.

Figure 5. The conceptual scheme of the process together with some example of cell colony.

Classifying Quantum Correlations

We apply the PGMClassifier to discriminate between factorized states, separable states, and entangled

states. We analyze from the simplest case (2 qubits) up to a system of 5 qubits and offer a comparison

between our quantum-inspired classifier and other classical classifiers.

Figure 6. 5-qubit case. (i) Average Balanced Accuracy for each classifier, (ii) Heatmap of the Balanced Accuracy for different sam- ples, (iii) Biclustering map, when a classi-
fier A outperforms a classifier B according to the Balanced Accuracy (lighter color indicates lower percentage), (iv) comparison of classifier per- formance for different numbers

of qubits. The graph shows the average balanced accuracy of various classifiers. Error bars represent the standard deviation, and shaded regions indicate confidence intervals

for each classifier.
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