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The Pretty Good Measurement (PGM) classifier Applying PGM classifier for Clonogenic Essay evaluation

Given an ensemble of possible guantum states with their respective a-priori probabilites R = A clonogenic assay is a quantification technique of the survival degree of in vitro cell cultures, which
{(p1,p1),---,(pg, pe) ¢ NO known analytical description exists for the exact optimal measurement for Is based on the ability of a single cell to grow and form a colony of cells after a given treatment. The
discriminating the states in R. Hovvever the so-called PGM [1] performs well in several situations. The purpose Is to count the number of the colonies. Actually, many strategies to count the number of the
average state of Risgivenby: o = Z _pipiandforanyi: 1 <i </, operators E; = <0T>1/2pipi(0T)1/2 colonies are by hands. Recent results show how by a classification between “pixel x belongs to the

o' is the pseudoinverse (or Moore—Penrose mverse) of o. Now, let us consider that each object p; is the colony” and “pixel x belongs to the background” it is possible to have information about the number of
quantum centroid, obtained as Z 1[) where ,0 represents the quantum encoding of classical objects the colonies. It allows us to move to a standard classification problem 12,4]. Each cell line is given by
belonging to class ¢ (and n is the cardmahty of class ). Given an unknown object p from the test set, 30 different pictures (30 different datasets), each picture is given by 90601 pixels (301 x 301 square
the quantity Tr(E;p) represents the probability that p belongs to class i. By applying a majority rule picture). In total we deal with more than 10 millions of data (large dataset). Further, each pixel is
over all i € [1, ], we classify p [3,5,6]. featured not only by its position in the image but also by important biological features: homogeneity,

correlation, energy, contrast, RGB, LUV.
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Figure 1. lllustration of the QI classification procedure. (a) Construction of quantum centroids using the feature map.
The three classes of objects (classical data) are represented as three different types of geometric figures (red balls, blue
triangles, and red pentagons). Under the action of the encoding map (blue arrows), the different classes are transformed
into quantum states (centroids), in the form of density operators. In principle, the number of classes and the number of
elements in each class can be arbitrary. (b) An unknown object is compared with the quantum centroids. Classification
is performed using the PGM classifier: an unknown object (represented by a blue question mark) is identified by a red
pentagon.
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Figu re 5. The conceptual scheme of the process together with some example of cell colony.

Performances of PGM classifiers
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Figure 2. Heatmap of the values of each classifier applied to each dataset. Biclastering map: percentage of datasets for

which the balanced accuracy of classifier A (in the column) outperforms that of classifier B (in the row). Darker (lighter)

color indicates higher (lower) percentage. We apply the PGM Classifier to discriminate between factorized states, separable states, and entangled
states. We analyze from the simplest case (2 qubits) up to a system of 5 qubits and offer a comparison
Newithyroid ris between our quantum-inspired classifier and other classical classifiers.
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Figure 3. After the encoding of each real object into a density operator p, we apply the tensor copy of p, i.e. p® ...p. This PGM - I I e

strategy turns out to produce an increasing of the performances of the PGM classifier. Linear Discriminant Analysis — 0.15 | 0.14 | 0.14 | 0.14
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Figu re 6. 5-qubit case. (i) Average Balanced Accuracy for each classifier, (i) Heatmap of the Balanced Accuracy for different sam- ples, (iii) Biclustering map, when a classi-
fier A outperforms a classifier B according to the Balanced Accuracy (lighter color indicates lower percentage), (iv) comparison of classifier per- formance for different numbers
of qubits. The graph shows the average balanced accuracy of various classifiers. Error bars represent the standard deviation, and shaded regions indicate confidence intervals
for each classifier.
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Figure 4. The circuit that implements the PGM in IBM-Q simulator. This circuit only contains C-Not gates (indicated by
the usual representation) and rotations R;(n) along a given direction i(x, yor z) of a given angle n.
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