Quantum Convolutional Neural Networks for Jet Images Classification

Hala Elhag, Karl Jansen, Lento Nagano, and Alice Di Tucci arXiv:2408.08701v1

1 Introduction and motivation

• Quantum machine learning (QML) is expected to surpass classical machine learning in a wide range of instances.

HEE circuit:

 $\mathcal{C}_X(x_1)$

 $\iota_X(x_3)$

• For example, when dealing with highly energetic jet images, classical convolutional neural networks (CNNs) fall short in classification accuracy.

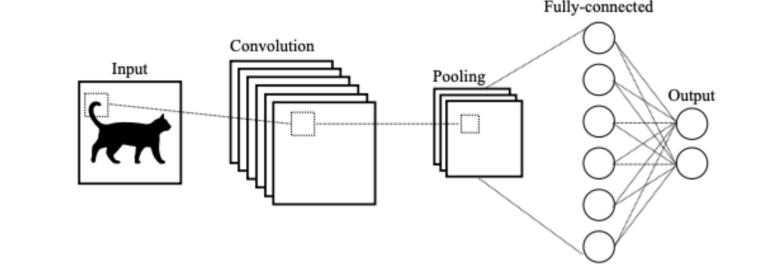
 $\times N_{\text{layer}}$

• In this study, we use a quantum convolutional neural network (QCNN) and compare its classification accuracy with CNN using a classical simulator.

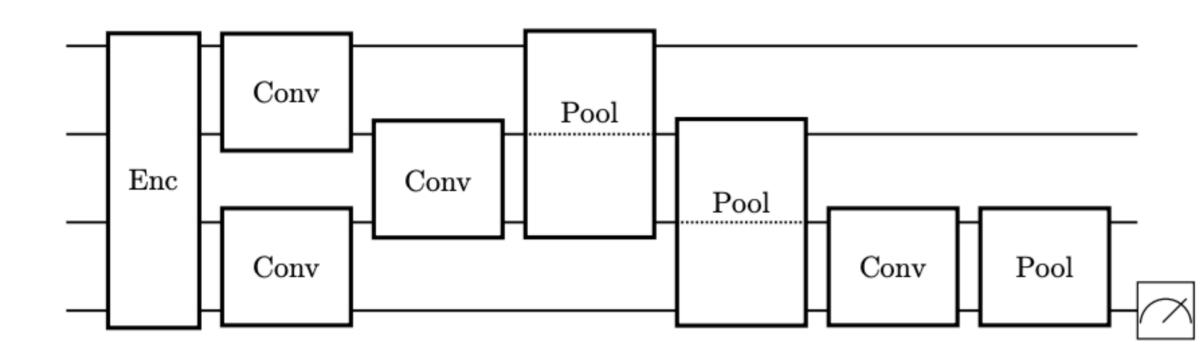
2 Methods

The main concept is to apply the convolutional and pooling tasks of CNNs for QCNNs.

3 Results



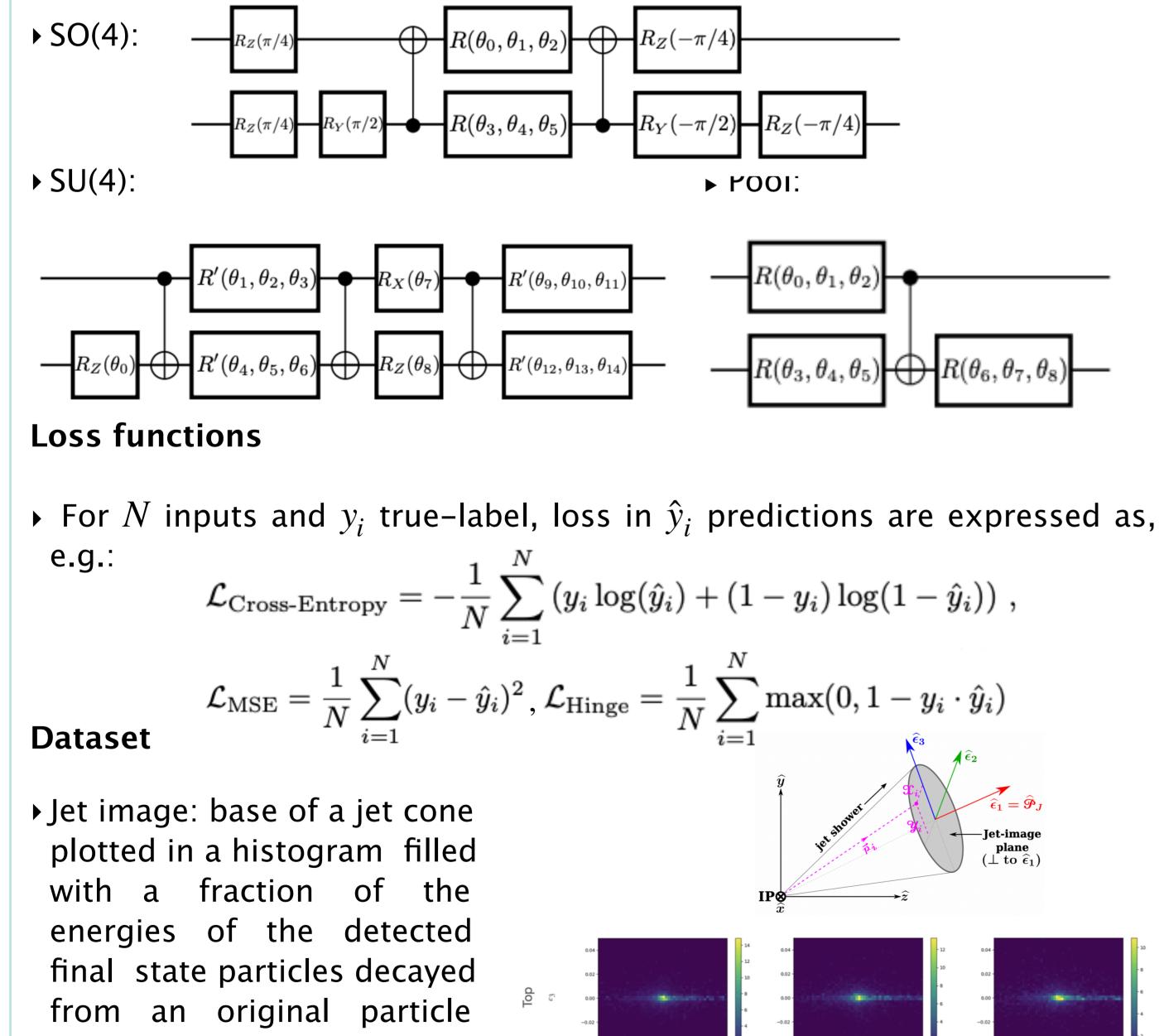
► QCNN:

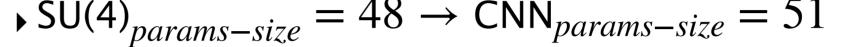


Encodings

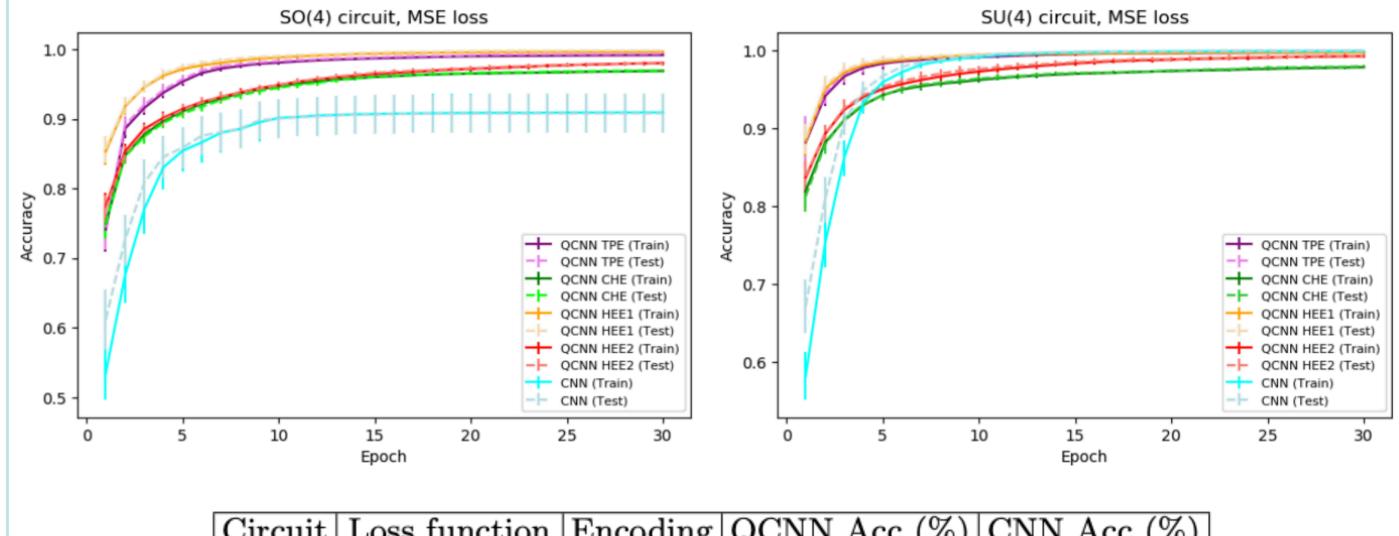
- Tensor Product Embedding (TPE).
- Hardware Efficient Embedding (HEE).
- Classicaly Hard Embediing (CHE).

Conv. and Pool.





Encoding dependence

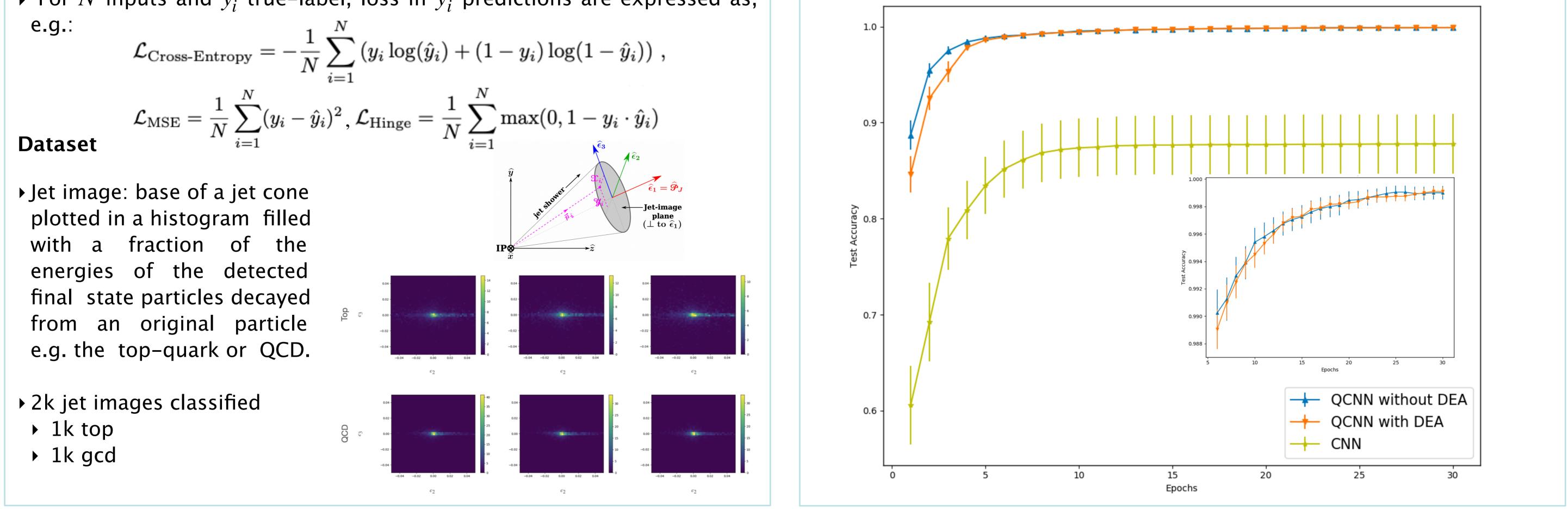


Circuit	Loss function	Encoding	QCNN Acc (%)	CNN Acc (%)
SU(4)	Hinge	TPE	99.36 ± 0.13	99.88 ± 0.05
		HEE1	99.34 ± 0.10	
		HEE2	98.30 ± 0.18	
		CHE	95.58 ± 0.34	
	MSE	TPE	99.93 ± 0.03	99.95 ± 0.02
		HEE1	99.90 ± 0.05	
		HEE2	99.28 ± 0.11	
		CHE	97.97 ± 0.12	
	Cross-entropy	TPE	99.58 ± 0.08	99.92 ± 0.03
		HEE1	99.62 ± 0.05	
		HEE2	98.62 ± 0.16	
		CHE	96.70 ± 0.18	

Dimensional expressivity analysis¹ (work in progress)

Dimensional expressivity analysis (DEA) performed to get optimal maximally expressive circuit with the least number of trainable parameters.

Circuit structure	params.	Acc (%)
SU(4) without DEA	48	99.90 ± 0.05
SU(4) with DEA	31	99.91 ± 0.03
CNN	33	87.79 ± 3.09



4 Conclusions

- All QCNN setups conveyed faster convergence compared to CNNs.
- Higher params-size indicated better accuracy of CNN compared to QCNN.
- QCNN showed better accuracy at the level of low params-size (e.g. SO(4) and DEA circuit).
- Further DEA studies are undergoing trials to reduce the run-time before performing real hardware runs.

1. L. Funcke, T. Hartung, K. Jansen, S. Kühn, M. Schneider, and P. Stornati, Dimensional expressivity analysis, best-approximation errors, and automated design of parametric quantum circuits (2021), arXiv:2111.11489 [quant-ph], DOI: https://doi.org/ 10.22323/1.396.0575.