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EXTENDED ABSTRACT

The primitive quantum gates of quantum computing
platforms usually involve only one or two qubits and
simple Hamiltonians. Our aim is to take advantage of
the more complex Hamiltonians available in experimental
platforms to design larger multi-qubit gates. Finding
these restricted Hamiltonians that generate desired
quantum gates is numerically challenging. Existing
methods of stochastic gradient descent [2], differential
evolution [3], or variational quantum algorithms [4] have
been attempted, but have limited success for larger gates.

We offer a solution to the problem of generating
multi-qubit gates from time-independent Hamiltonians
through the lens of differential geometry of the Lie group
structure of quantum gates. Some geometric techniques
have previously been crucial for understanding quantum
circuit complexity [5]. Our algorithm utilises geodesic
information and gradients on the group manifold to
rapidly converge to an accurate solution. At each
optimisation step, we update the Hamiltonian coupling
strengths such that the resulting unitary is closer to the
target unitary gate. This can be achieved by updating
the couplings such that they follow (as closely as possible)
the geodesic curve towards the target. In our paper,
we formalise this comparison and demonstrate how the
geodesic can be generated by updating Hamiltonian
coupling strengths in time-independent Hamiltonians.

We demonstrate the algorithm’s efficiency by
comparison to gradient descent techniques for the
generation of Toffoli and Fredkin gates. Furthermore,
we use the algorithm to generate previously unavailable
weight-k parity checks with up to 6 qubits, which
are necessary for a wide array of quantum error
correcting codes. We find that our geodesic algorithm
is significantly more efficient than gradient descent
algorithms for finding a restricted generating
Hamiltonian of a desired unitary gate, see Fig. 1.
Larger, more complex quantum gates can therefore be
implemented directly. Not only could this lead to less
noisy gates, but it could also reduce the total time to
run a circuit on the hardware. This is crucial for NISQ
applications where we have a limited coherence time and
gives the significant advantage of increasing the clock

speed for fault-tolerant quantum computation.
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FIG. 1. Comparison of the number of steps required before
a solution with infidelity less than ε = 0.001 is found for:
our geodesic algorithm (blue), stochastic gradient descent
(SGD) of Ref. [6] (green), and a simple gradient descent
optimiser that uses gradients computed with JAX (orange).
For all methods, we consider 1000 random initialisations of the
parameters. Both the geodesic algorithm and SGD algorithm
find a solution 100% of the time, whereas the JAX gradient
descent algorithm finds a solution 98% of the time.

ALGORITHM OVERVIEW

The algorithm uses the effective generators of the
directional derivatives and geodesic generators. The
effective generators, Ωl, of the directional derivatives for
each Lie algebra component live in the tangent space
of the SU(2n) Riemannian manifold. The generator of
the geodesic Γ(m) determines the best way to update
the parameters. At each optimisation step m, we
want to update the parameters such that the resulting
unitary gate is closer to the target unitary, V . This
can be achieved by updating the parameters such that
they follow (as closely as possible) the geodesic curve
towards the target V . The paper describes the algorithm
formally and shows how the geodesic can be generated
by updating interaction strengths in time-independent
Hamiltonians by solving a linear least-squares problem.
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