DEAKIN'S QUANTUM ML RESEARCH: QUANTUM FEDERATED LEARNING WITH SIMPLE DATA ENCODING AND AGGREGATION SHIVA RAJ POKHREL, DEV GURUNG, NAVNEET SINGH, NAMAN YASH AND GANG LI **IOT & SOFTWARE ENGINEERING LAB, SCHOOL OF IT, DEAKIN UNIVERSITY**

ABSTRACT

Our work addresses the challenges of implementing QFL over distributed quantum networks by operationalizing data-encoding-driven QFL on IBM's quantum cloud platforms. Demonstrated with genomic datasets, our method accelerates QFL adoption, enabling efficient, privacy-preserving training while showcasing its transformative potential in quantum computing and advancing Deakin's leadership in this field. We invite collaboration and funding to further develop and scale our QFL methodology.*^a*

a contact: shiva.pokhrel@deakin.edu.au.

[3] Mahdi Chehimi et al. 2024. Foundations of Quantum Federated Learning Over Classical and Quantum Networks. IEEE Network 38.

THREE IDEAS

1. Advance decentralized quantum model training with data privacy, addressing key challenges in cloudbased quantum platforms through innovative dataencoding-driven QFL

> • A scalable, privacy-preserving QFL framework with innovative data encoding and aggregation methods. • Demonstrated QFL's efficiency in genomic sequence classification using amplitude encoding. • Proposed and validated a personalized QFL (pQFL) framework for tailored model training. • Operationalized QFL on IBM's cloud quantum platforms, showcasing scalability and accessibility.

4: end for

2. Investigate QML techniques for genomic sequence classification; explore feature maps to encode classic data to quantum data

3. Personalised QFL: pQFL framework design, theoretical analysis and experiments

GENOMIC DATA ANALYSIS

- 1: Encode data \vec{x}_i into quantum states $\psi \leftarrow U_{\text{feature}}(\vec{x}_i, \theta)$.
- 2: Construct $C \rightarrow$ Compute kernel matrix K. 3: for $t = 1$ to T do
- Randomly select a subset of samples
- Compute $y_i \langle \vec{w}, \phi(\vec{x}_i) \rangle$ for each sample
- if $y_i \langle \vec{w}, \phi(\vec{x}_i) \rangle$ < 1 then $\vec{w} \leftarrow (1 \eta \lambda) \vec{w} + \eta y_i \phi(\vec{x}_i)$
- else $\vec{w} \leftarrow (1 \eta \lambda) \vec{w}$
- end if
- Normalize \vec{w} : $\vec{w} \leftarrow \min\left(1, \frac{1/\sqrt{\lambda}}{\|\vec{w}\|}\right) \vec{w}$
- 10: end for
- 11: Prepare $\psi \leftarrow U_{\text{feature}}(\vec{x}_i, \theta)$.
- 12: **return** Decision function: $f(\vec{x}) = sign(\langle \vec{w}, \phi(\vec{x}) \rangle)$.

Algorithm 3 Variational Quantum Classifier (VQC)

- 1: Encode data \vec{x}_i into quantum states $\psi \leftarrow U_{\text{feature}}(\vec{x}_i)$.
- 2: Construct variational circuit: parameterized gates $U(\vec{\theta})$.
- 3: Apply $U(\hat{\theta})$ to the encoded states ψ .
- 4: Measurement $M \leftarrow \text{measure}_{\{|0\rangle, |1\rangle\}}(\psi)$
- 5: Compute the cost function $C(\theta)$.
- 6: while not converged do
- Use classical optimizer: $\vec{\theta} \leftarrow$ optimize($C(\vec{\theta})$)

POFL ALGORITHM POFL INSIGHTS

REFERENCES

[1] Jacob Biamonte et al. 2017. Quantum machine learning. Nature. [2] Gurung, Dev, and Shiva Raj Pokhrel. "A Personalized Quantum Federated Learning." Proceedings of the 8th Asia-Pacific Workshop on Networking. 2024.

Figure 1: Local learning in the proposed QFL: consisting of several key components. The *feature map* ingests input data and encodes them into a quantum state. Following this, the *Ansatz* comes into play as a parameterized quantum circuit, its parameters being iteratively fed by the *Optimizer*–optimization objective function is driven by the outcomes from the *Sampler*.

[4] Katarína Grešová et al. 2023. Genomic benchmarks: a collection of datasets for genomic sequence classification. BMC Genomic Data.

[5] Shiva Raj Pokhrel et al. 2024. Quantum Federated Learning Experiments in the Cloud with Data Encoding. arxiv 2024

KEY OUTCOMES AND ACHIEVEMENTS

QFL ALGORITHM

DEAKIN'S QFL

Figure 2: Local learning in the proposed QFL: consisting of several key components. The *feature map* ingests input data and encodes them into a quantum state. Following this, the *Ansatz* comes into play as a parameterized quantum circuit, its parameters being iteratively fed by the *Optimizer*–optimization objective function is driven by the outcomes from the *Sampler*.

