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ABSTRACT

DEAKIN‘S QFL
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1. Advance decentralized quantum model training § | Local Training

with data privacy, addressing key challenges in cloud-
based quantum platforms through innovative data-
encoding-driven QFL

2. Investigate QML techniques for genomic sequence
classification; explore feature maps to encode classic
data to quantum data

3. Personalised QFL: pQFL framework design, theo-
retical analysis and experiments

Figure 1: Local learning in the proposed QFL: consisting
of several key components. The feature map ingests input
data and encodes them into a quantum state. Following
this, the Ansatz comes into play as a parameterized quan-
tum circuit, its parameters being iteratively fed by the Opti-
mizer—optimization objective function is driven by the out-
comes from the Sampler.
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& Client-side training loop
Imualize chent-specific quantum circut ¢,
Encode local client data x; into quantum states X,
Train the quantum model by minimizing the local
loss function and updating the weights:
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Figure 2: Local learning in the proposed QFL: consisting
of several key components. The feature map ingests input
data and encodes them into a quantum state. Following
this, the Ansatz comes into play as a parameterized quan-
tum circuit, its parameters being iteratively fed by the Opti-
mizer—optimization objective function is driven by the out-
comes from the Sampler.
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end for
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GENOMIC DATA ANALYSIS

Algorithm 2 Pegasos-QSVC Algorithm 4 Quantum Neural Network (QNN) Operation

1: Encode data X; into quantum states i/ < Upaature (Xi, 0). 1: Encode x; into quantum states: V «— Upapure (X;)-
2: Construct C — Compute kernel matrix K. 2. for each layer [ from 1 to L do
3: fort=1to T do 3: Perform unitary transformation: Up(0;)
4: Randomly select a subset of samples 4: end for
5: Compute y;{w, ¢(x;)) for each sample 5: Perform CNOT (or custom entangling gate)
6: if y;{w.@(x;)) < 1then w «— (1 — pA)w + nyid(X;) 6: Measure output qubits and obtain |®)
7: else w e (1—npd)w 7. while (E > r) do
8: end if &: Renew ¢ (quantum gradient descent): { = 0 — gV3E
g- Normalize w- w «— min (1, 1"" ;ﬁ] W 9: E = |expected_output — measuremeni(®)|
10- end for 10: end while
11: Prepare ¢ « Upapure(X;. 0).
12: return Decision function: f(¥) = sign({w, ¢(¥))}). 30z CPISCHIvE functian value VS Recation (OMN) | Objactive function vakua S Haration (VOC)
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Algorithm 3 Variational Quantum Classifier (VQC) :‘: Hﬂ'&; fh"',.h-'ﬂ,“, i.E ‘r ;
1: Encode data X; into quantum states i/ «— Up.aure (X5). 5“" ! h o WY - ‘Efﬁ | — ) |, é
2: Construct variational circuit: parameterized gates U(0). Joans ly\ I"| h = g:ﬁ | — Peuiresturesap E
3. Apply U (0) to the encoded states . %: ulL | 1 Fuses [, i
4: Measurement M «— measure (V) oams “Jr |'5 i:::: ! e %
{l0).11)} I\ b=t L S |
5: Compute the cost function C(@). et i\ """-"!ﬂ._;w %lﬂj w‘lt..'ml-._,._
6: while not converged do e e e TEXXE R R E R =3
7. Use classical optimizer:  « optimize(C(6)) o o

POFL ALGORITHM

Input: N Devices {d),d>,..,d,} with local datasets
{Dy,Ds, ... Dy}, Local models {8y, Oy, ...,0,}, weigh-
tage values g for global model and [ for local model.

Output: Personalized Models 0,, Global Model Oyy,.
I: procedure LOCAL COMPUTATION
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3: procedure SERVER COMPUTATION
Weighted: 0, = (g.Y[ 0 +1.6;)/(g+1)
Euclidean: if edyye < edy, 0y = Oy
else 0, = (0 + Opg) /2

erver Periommande
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KEY OUTCOMES AND ACHIEVEMENTS

e A scalable, privacy-preserving QFL framework with innovative data encoding and aggregation methods.

 Demonstrated QFL’s efficiency in genomic sequence classification using amplitude encoding.

* Proposed and validated a personalized QFL (pQFL) framework for tailored model training.

e Operationalized QFL on IBM’s cloud quantum platforms, showcasing scalability and accessibility.



