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The following extended abstract is based on [1].
Introduction: Computing the moments EU [Tr

[
UρU †O

]t
] of expectation values measured at the output of

random quantum circuits has become a task of paramount importance in quantum information science. For
instance, their analysis can help determine conditions leading to non-classical simulability and exponential
quantum advantage [2–7], the onset of quantum chaos [8–10], and the presence of local minima and barren
plateaus in variational quantum computing [11–22]. If we assume that the circuit U is composed of local Haar
random gates [9, 10, 23–27], one can map the problem of computing the moments to a Markov chain-like process,
which enables the use of tools from classical statistical mechanics [10, 14, 18, 28–31]. While very successful at
producing upper and lower bounds for the moments, these methods usually require special assumptions on the
type of gates as well as on their arrangement. Furthermore, if one uses Monte Carlo (MC) sampling techniques
to exactly computing the moments [14], one could require a prohibitively large number of samples due to MC’s
additive error, or suffer from the sign problem [32, 33]. In this work we propose using Tensor Networks (TN) to
compute the moments of the random quantum circuit’s expectation values. At its core, our work leverages the
vectorization picture to represent the circuit’s initial state and the measurement operator t-th fold products as
Matrix Product State (MPS) [34, 35] and the local moment matrices as local gates in a TN (see Fig. 1).

Framework: In what follows we will consider a random unitary quantum circuit U acting on an n-qudit
Hilbert space H = (Cd)⊗n. We further assume that the circuit takes the form U =

∏L
l=1 Uγl , i.e., that it

is composed of L local gates acting on kl ⩽ k qudits according to some topology T = {γl}Ll=1. Here, each
γl ∈ [n]⊗kl is a tuple of (non-repeating) kl indexes ranging between 1 and n which determine the set of qubits
that Uγl acts on. For instance, if the circuit is a one-dimensional ansatz acting on alternating pairs of qudits
(see Fig. 1), then we would have T = {(1, 2), (3, 4), . . . (n − 1, n), (2, 3), . . .}. Moreover, we will assume that
each Uγl belongs to some unitary Lie group Gl ⊆ U(dk). The t-th moment of the expectation value is

EU [(Tr
[
ρU †OU

]
)t] = Tr

[
EU [U

⊗tρ⊗t(U †)⊗t]O⊗t
]
= ⟨⟨ρ⊗t|τ̂ (t)|O⊗t⟩⟩ . (1)

Here, the expectation value is taken over the set of unitaries obtained by sampling each local Uγl independently
and identically distributed (i.i.d.) according to the Haar measure dµl over Gl. As such, we can express
EU = EGL

· · ·EG1 , with EG[f(U)] =
∫
G dµ(U)f(U) the Haar integral over the group G. In the last equality of

Eq. (1), we have expressed the moment in the vectorization formalism, and we have defined

τ̂ (t) =

∫
dµ(U)U⊗t ⊗ (U∗)⊗t =

L∏
l=1

(∫
Gl

dµ(Uγl)U
⊗t
γl

⊗ (U∗
γl
)⊗t

)
=

L∏
l=1

τ̂
(t)
Gl

. (2)

Above, τ̂ (t) is the t-th moment operator for the whole circuit, while τ̂
(t)
l are the t-th moments operators of the

each of the local gates. Importantly, given that each τ̂
(t)
Gl

is a projector into its local t-th order commutant,
we can interpret this object as a process matrix in the bases arising from the local commutants of neighboring
gates. In turn, such representation will map τ̂ (t) to a sequence of L such process matrices arranged according

a Report Number: LA-UR-24-21570



2

Figure 1: Schematic representation of our main results. Weingarten calculus allows to map EU [Tr
[
ρU†OU

]t
] to

computing the vector inner product ⟨⟨ρ⊗t|τ̂ (t)|O⊗t⟩⟩, where |ρ⊗t⟩⟩ and |O⊗t⟩⟩ are respectively the vectorized t-th fold
tensor product of the initial state and measurement, and where τ̂ (t) is the product of the local gates t-th fold moment
operators. Previous works interpret τ̂ (t) as a Markov chain-like process and use MC sampling techniques to compute

the inner product. We instead evaluate it by expressing |ρ⊗t⟩⟩ and |O⊗t⟩⟩ as MPSs, and τ̂ (t) as a TN with local gates.

to the topology of T . This simple, albeit extremely important, interpretation allows us to think of Eq. (1) as
the inner product between the vector |O⊗2⟩⟩ and |ρ⊗2⟩⟩ which are evolved through a sequence of local gates.

Main Results: Given the issues that can arise when treating the Markov chain-like problem with MC,
we ask the question: Can we use tensor networks, instead of Monte Carlo sampling, to exactly compute the
moments of expectation values obtained from quantum circuits composed of local random gates? In this work
we show that not only the answer is yes, but that this approach has several advantage over existing MC-based
methods. Our main contributions are:

• Establishing a general TN formalism to compute exact moments of random quantum circuits, whichever
their topology, locality of the gates, and the local groups the gates are sampled from. At its core, our
method is based on expressing |ρ⊗t⟩⟩ and |O⊗t⟩⟩ as MPSs, and τ̂ (t) as a TN with local gates.

• Using representation theory to deriving theoretical results which analyze the local dimension of the
tensor, as well as presenting bounds for the maximum bond dimension of the matrix product states that
deep circuits can produce.

• Showcasing the effectiveness of our method with extremely large scale numerical studies. We focus
on t = 2 moments, that are crucial to diagnose the emergence of the Barren Plateaus or the onset of
output probabilities anticoncentration phenomenon [36]. We compare our methods against MC sampling,
revealing that we can indeed compute the moments with much higher precision when using TN (see
Fig. 2), and also be able to tackle tasks where Monte Carlo would exhibit sign problems. Furthermore,
we illustrate that our methods can efficiently compute the moments for circuits acting on thousands
of qubits, and composed of thousands of gates as shown in Fig. 3. Finally, we use our TN tools
to present numerical evidence that circuits composed of local random orthogonal gates anticoncentrate
at logarithmic depth [37].

Implications and Future Directions: In this work we present a novel tool for computing moments of
random quantum circuits composed of local gates. Our approach not only allow us to evaluate quantities that
would be otherwise intractable, but it also enables new and exciting research directions. For instance, we note
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Figure 2: We compute and compare a probability distribution of moments via TNs (ptn) and MC sampling (pmc) via
their Kullback-Leibler (KL) divergence. Results show that even at ns = 106 MC samples, TN always performs better

than MC. The inset shows that a supra-exponential increase in MC samples is needed to decrease the KL by a constant
value. Left panel corresponds to a Quantum Convolutional Neural Network [38] (QCNN), while the right to a

one-dimensional Hardware Efficient Ansatz (HEA). In both cases all two-qubit gates are sampled i.i.d. from G = U(4)

Figure 3: Left: Second moment probability distribution for a very large QCNN with gates sampled i.i.d. from
G = U(4) acting on n = 1264 qubits and having thousands of gates (blue). Note that full density matrix simulation of
these expectation values would be beyond any plausible supercomputer as it would require over 101632 bits to save each
amplitude to machine precision. Right: Probability distribution for an HEA with gates sampled from G = U(4) acting
on n = 200 qubits as a function of the number of layers nL. We note that the distributions for nL = n/2 and nL = n

are completely indistinguishable, signaling the convergence of the circuit to being a design over U(2n).

that the representation of the circuit moment operator itself could be used to learn properties of the quantum
circuit independently of the initial state and measurement operator. For instance, we could use density matrix
renormalization group techniques to obtain its eigenvalues, and thus be able to predict the number of layers
needed for the circuit to become a t-design over GU . On a similar note, it is worth highlighting that having
access to a matrix product state representation of τ̂ (t)|ρ⊗t⟩⟩ could enable a whole new dimension of random
quantum circuit analysis, such as the study of the entanglement and entropic properties of this quantum state.
Finally, we note that the proposed tensor network formalism can be readily applied to random quantum circuits
with intermediate measurements, thus enabling the study of monitored random dynamics and measurement-
induced criticality [39–42]. As such, given the versatility of our proposed techniques, we envision that tensor
networks will quickly become a standard tool in the toolbox of quantum information scientist studying and
working with circuits composed of random local gates.
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