
Let the Quantum Creep In:
Designing Quantum Neural Network Models by Gradually Swapping Out Classical Components

Peiyong Wang¹, Casey R. Myers³ ¹, Lloyd C. L. Hollenberg², Udaya Parampalli¹
¹School of Computing and Information Systems, The University of Melbourne ²School of Physics, The University of Melbourne

³School of Physics, Mathematics and Computing, The University of Western Australia

We propose a framework for integrating quantum computing into AI by gradually replacing classical neural network layers with quantum layers, maintaining consistent input-output
flow. Unlike most end-to-end quantum neural network approaches, this method provides a framework for a finer analysis of quantum components’ impact on performance. Starting with
a simple three-layer classical neural network, we systematically introduce quantum layers and evaluate performance on datasets like MNIST, FashionMNIST, and CIFAR-10. Our results

highlight the potential of hybrid classical-quantum designs, offering insights for future quantum neural network development.

The Framework
For a (more) fair comparison between classical NN and
QNN, instead of designing an end-to-end QNN from
scratch, we first start with a fully classical model (neural
network), and gradually swap the classical NN layers
with their quantum counterparts which have the same type
of inputs and outputs. Hence the name “Let the quantum
creep in”.

Overview of the proposed framework. The symbol for the
quantum computer is inspired by [1].
• (a) the information flow structure and the required

dimensions of the input and output of each vacancy for
candidate neural network layers. Double-lined boxes
are the input and output of the neural network; Dash-
lined boxes are layer vacancies for candidate neural
network layers. The information passed between layers
and the flatten operation are classical, while the
candidate neural network layers could be either
classical or quantum.

• (b) replacement_level=0. In this case all vacancies
are filled with classical neural network layers (Conv2d
and Linear). All these layers are executed on a GPU
with classical neural network libraries.

• (c) replacement_level=1. In this case, the classical
convolution layers Conv2d are replaced with its
quantum counterpart FlippedQanv3x3, while the
classical Linear layer left unchanged.

• (d) replacement_level=2. In this case, all the
classical layers in (b) are replaced with their quantum
counterpart, i.e. Conv2d → FlippedQanv3x3 and
Linear → DataReuploadingLinear.

All quantum layers are simulated on a GPU when training
and testing the neural network model.

FlippedQanv3x3
For a 3 by 3 patch of an image, 𝑥

𝑥 =
(
((
(𝑥1
𝑥4
𝑥7

𝑥2
𝑥5
𝑥8

𝑥3
𝑥6
𝑥9)

))
),

padded to a 4 by 4 matrix 𝑀𝑥

𝑀𝑥 =

(
((
((
((
𝑥1
𝑥4
𝑥7
0

𝑥2
𝑥5
𝑥8
0

𝑥3
𝑥6
𝑥9
0

0
0
0
0)
))
))
))
,

the FlippedQanv3x3, parameterised by 𝜽 reads as:

FlippedQanv3x3𝜽(𝑥) = ⟨𝜑(𝜽)|𝒪(𝑥)|𝜑(𝜽)⟩,

𝒪(𝑥) = 1
2
(𝑀𝑥 +𝑀𝖳

𝑥),

where |𝜑(𝜽)⟩ is a four-qubit paraemterised quantum
state. In our paper [2], we have shown that
mathematically, FlippedQanv3x3 is equivalent to a
classical convolution layer with respect to the input data.

• (a) Images and feature maps that only have one
channel only need a single circuit for each patch x.

• (b) For images and feature maps that have multiple
channels, the patch of image within the view of the
FlippedQanv3x3 kernel is a 3-D tensor with the the
shape (𝐶, 3, 3). In this example, we take 𝐶 = 3, and
in this case, three circuits with different parameters are
required from the observables constructed from each
channel to calculate the output of the
FlippedQanv3x3 kernel operation.

DataReuploadingLinear

The DataReuploadingLinear layer at the end of the
hybrid neural network. It takes a 12544-dimension feature
vector from the Flatten layer, pad it with zeros and
reshape it to a 27 × 27 square matrix 𝑀 . A quantum
Hamiltonian 𝐻𝑀 is constructed with 𝑀 , and this
Hamiltonian will be used to construct the “time”-evolution
operator 𝑊 = 𝑒−

𝑖𝐻𝑀
𝐿 following the method proposed in

our previous research [3], where 𝐿 is the number of layers
of the data re-uploading circuit. In this project, we fix 𝐿 =
10. The trainable layers in the data reuploading circuit are
parameterised SU(27) unitaries.

Results

In our research, we trained all three different replacement
levels on three different datasets (MNIST, FashionMNIST
and CIFAR-10). Each training combination
(replacement_level × dataset) is repeated five times with
different parameter initialisations. The loss function is
softmax cross-entropy for the 10-label classification task.
We used linear algebra functionalities in PyTorch for
circuit simulation, as well as torch.optim.Adam for
training. The numerical experiments are conducted on a
single NVIDIA H100 GPU. When replacement_level = 0,
all layers in the neural network are classical, i.e. classical
Conv2d and classical Linear; when the replacement_level
= 1, only the classical convolution layers are replaced
with the quantum FlippedQuanv3x3 layer; when the
replacement_level = 2, both the classical convlution and
linear layers are replced with their quantum counterparts,
i.e. Conv2d → FlippedQuanv3x3 and Linear →
DataReUploadingLinear. We can see that the
DataReUploadingLinear brought a non-trivial
performance increase from replacement_level = 1 to
replacement_level = 2.

References
[1] M. Cerezo et al., “Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing.” [Online]. Available: http://arxiv.org/abs/2312.09121

[2] P. Wang, C. R. Myers, L. C. L. Hollenberg, and U. Parampalli, “Let the Quantum Creep In: Designing Quantum Neural Network Models by Gradually Swapping Out Classical Components.” Accessed: Sep. 27, 2024. [Online]. Available: http://arxiv.org/abs/2409.17583

[3] P. Wang, C. R. Myers, L. C. L. Hollenberg, and U. Parampalli, “Quantum Hamiltonian embedding of images for data reuploading classifiers.” Accessed: Aug. 09, 2024. [Online]. Available: http://arxiv.org/abs/2407.14055

QTML2024 github.com/peiyong-addwater/Let-The-Quantum-Creep-In arXiv:2409.17583

http://arxiv.org/abs/2312.09121
http://arxiv.org/abs/2409.17583
http://arxiv.org/abs/2407.14055
https://github.com/peiyong-addwater/Let-The-Quantum-Creep-In
https://arxiv.org/abs/2409.17583

