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We propose a framework for integrating quantum computing into Al by gradually replacing classical neural network layers with quantum layers, maintaining consistent input-output

flow. Unlike most end-to-end quantum neural network approaches, this method provides a framework for a finer analysis of quantum components’ impact on performance. Starting with

a simple three-layer classical neural network, we systematically introduce quantum layers and evaluate performance on datasets like MNIST, FashionMNIST, and CIFAR-10. Our results
highlight the potential of hybrid classical-quantum designs, offering insights for future quantum neural network development.
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classical convolution layer with respect to the input data.
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network layers. The information passed between layers [ofofolo]  [ofofo (replacement_level x dataset) is repeated five times with
and the flatten operation are classical, while the — ditferent parameter initialisations. The loss function is
candidate neural network layers could be either ) /;)_- , softmax cross-entropy for the 10-label classification task.
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All quantum layers are simulated on a GPU when training channel to calculate the output of the performance increase from replacement_level = 1 to

and testing the neural network model. FlippedQanv3x3 kernel operation. replacement_level = 2.
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