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Simulating strongly correlated quantum many-body
systems is one of the main tasks envisioned for quantum
computers. While current devices are limited by high
error rates and low qubit counts, there is still hope that
they may offer quantum advantage in these problems. As
such, the development of algorithms suitable for these
near-term machines has gathered remarkable interest in
recent years. The proposal of the variational quantum
eigensolver (VQE) [1] was the first step in this direc-
tion. In contrast with algorithms designed for the fault-
tolerant quantum computing era, VQE employs shallow
state preparation circuits (ansätze) and undertakes a nat-
urally noise-resilient learning strategy, where a classical
optimizer is used to tune parameters of quantum gates.

While remarkable progress was made with VQE,
ansätze remain deep beyond viability, and the most
hardware-efficient options have been shown not to be
trainable [2]. One promising alternative is to build
the ansatz adaptively, such that its structure is dic-
tated by the problem at hand. The first algorithm
to use such a strategy was the Adaptive Derivative-
Assembled Problem-Tailored VQE (ADAPT-VQE), pro-
posed in Ref. [3] and extended in Refs. [4–9].

ADAPT-VQE produces shallower and more trainable
circuits at the expense of a significant measurement over-
head [10]. Starting from a classical reference state, it cre-
ates a circuit block-by-block using information available
on the fly. Each iteration selects one anti-Hermitian gen-
erator from an operator pool, based on the associated
gradient magnitude. This operator is multiplied by a
variational parameter and exponentiated to create a pa-
rameterized unitary operator, which is appended to the
ansatz. A VQE subroutine is then employed to optimize
all of the parameters. The initial value for the new pa-
rameter is set to zero, while old parameters are recycled.

The optimizer in the VQE subroutine is usually re-
garded as a black box outputting nothing but optimal
parameters. In contrast, we propose a quasi-Newton op-
timizer for ADAPT-VQE where second-order informa-
tion gathered by the optimizer naturally flows between
optimizations. Our optimizer is an adaptation of BFGS
[11–14], a quasi-Newton numerical optimization method
which approximates an inverse Hessian matrix H based
on evaluations of the cost function and its gradient. H
is typically initialized to the identity matrix, under the
assumption that we have no prior information regard-

ing the optimization landscape. However, in the context
of ADAPT-VQE, this means that each optimization will
re-approximate all second derivatives from scratch and
discard them in the end, in spite of the fact that the fi-
nal state for the (n− 1)th ADAPT-VQE optimization is
the initial state for the nth. Since all second derivatives
concerning the former n−1 parameters should remain as
accurate as before, we propose to set the initial inverse
Hessian for the nth ADAPT-VQE optimization as

H0 ←
(
H∗

n−1×n−1 0
0 1

)
, (1)

where H∗
n−1×n−1 is the final inverse Hessian from the

(n − 1)th ADAPT-VQE optimization. We refer to this
strategy as ‘Hessian recycling’.
Table I shows the impact of this Hessian recycling

strategy on QEB-ADAPT-VQE [5]. In this work, we
used the STO-3G basis set for all molecules and set the
ADAPT-VQE convergence threshold to 10−6 for the 12
qubit molecules (LiH, H6) and 10−5 for BeH2 (14 qubits).
Expectation values were calculated via matrix algebra.
The table shows that the cost bottleneck is the VQE
optimization—precisely what our protocol addresses. We
observe savings between 80 and 90% in the total measure-
ment costs of ADAPT-VQE for these small molecules.
In Fig. 1, we observe the evolution of the error and

function evaluations per ADAPT-VQE iteration for dif-
ferent systems and pools. We confirm that recycling the
Hessian preserves solution quality: The error matches
the error of the original protocol in all cases, and the
resulting ansätze are the same. Despite preserving the
accuracy, our strategy significantly decreases the total
number of function evaluations. Its impact is the great-
est for the largest (BeH2) and most strongly correlated
(H6) molecules. Within the same system, it is greater for
larger iteration numbers (higher dimensional optimiza-
tions). Thus, we can expect even greater savings for
classically intractable systems.
In Fig. 2 we look into the optimization process asso-

ciated with one particular ADAPT-VQE iteration. In
line with previous results, Fig. 2a shows that recycling
the Hessian results in a similar final error for fewer it-
erations. In Fig. 2b, we compare the search direction
with Newton’s direction. Newton’s method requires ex-
plicitly evaluating the Hessian, which is then used to
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Molecule
LiH H6 BeH2

1.5Å 3Å 1Å 3Å 1.3Å 3Å

S
te
p

Gradient Measurement 5.2× 103 5.4× 103 1.9× 104 1.9× 104 1.2× 104 1.3× 104

V
Q
E Canonical 2.5× 105 2.4× 105 1.3× 107 2.2× 107 4.2× 106 3.6× 106

Recycling Hessian 6.0× 104 3.2× 104 1.7× 106 7.9× 106 9.4× 105 5.6× 105

TABLE I: Measurement costs incurred by QEB-ADAPT-VQE [5] for several systems. The costs are given as
multipliers for the cost of a naive energy evaluation. We consider the gradient measurement strategy in [15].

(a) LiH at 3Å, QE pool [5] (b) H6 at 1.5Å, QE pool [5] (c) BeH2 at 2Å, Pauli pool [4]

FIG. 1: Energy error (top) and number of function evaluations (bottom) per ADAPT-VQE iteration, with and
without Hessian recycling, for several molecules at various bond distances.

set the search direction. This allows Newton’s method
to converge in fewer iterations, at significant additional
measurement cost per iteration. We can see that the
search direction aligns much faster with Newton’s direc-
tion when the Hessian is recycled. This is remarkable:
Unlike Newton’s method, our optimization method never
evaluates the Hessian. Yet, it aligns with the Newton
search direction in a fraction of the iterations needed for
the canonical BFGS implementation. Figure 2c shows
the distance between the last row of the approximate
and exact inverse Hessians. Surprisingly, recycling the
Hessian allows the second derivatives describing correla-
tions between the new parameter and old ones to con-
verge faster to the true values, even though they were
initialized to zero just as in canonical BFGS. Even more
surprisingly, the final error is reduced despite the lower
number of iterations.

Finally, we focus on the convergence rate of the op-
timization. The relevant quantities are plotted in the
lower panels of Fig. 2. In Fig. 2d, we see that the differ-
ence between the approximate and exact Hessians along
the search direction goes to zero almost immediately if

we recycle the Hessian, but this does not happen when
we do not. Further, the step size (Fig. 2e) saturates to
unity after only two iterations when we recycle the Hes-
sian, but oscillates instead of stabilizing when we do not.
Together these results indicate that recycling the Hessian
results in a superlinear convergence that would otherwise
not be achieved [14]. Figure 2f confirms this. BFGS with
Hessian recycling enjoys superlinear convergence (the op-
timal scenario for quasi-Newton methods), while canoni-
cal BFGS converges linearly with a convergence constant
r close to 1—the worst possible scenario [14]. Such a
convergence rate is expected of gradient descent in ill-
conditioned problems and constitutes an underwhelming
performance for a quasi-Newton optimizer.
To conclude, the new technique we propose brings

forth significant improvements in the cost-efficiency of
ADAPT-VQE, the leading gate-based algorithm for
molecular simulations in near-term devices. This is an
impactful advance in the race to practical quantum ad-
vantage. We believe this will be of interest to the quan-
tum information community and motivate researchers to
explore new directions for VQE, related to the develop-
ment of algorithm-specific optimization protocols.
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(a) Error (b) ∥p(QN)
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(N)
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(c) ∥H(exact)
n,∗ −H

(opt)
n,∗ ∥F

(d) ∥(Bk−∇2f(x∗))pk∥F
∥pk∥F

(e) Step size (f)
∥xk+1−x∗∥F
∥xk−x∗∥F

FIG. 2: Evolution of the 75th QEB-ADAPT-VQE optimization with and without Hessian recycling for H6 at 1Å.
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